Physics.Math.Code
150K subscribers
5.23K photos
2.21K videos
5.82K files
4.58K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

Обратная связь: @physicist_i
Download Telegram
Media is too big
VIEW IN TELEGRAM
🌀 10 фракталов, которые стоит увидеть

Фрактал (лат. fractus — дроблёный, сломанный, разбитый) — множество, обладающее свойством самоподобия (объект, в точности или приближённо совпадающий с частью себя самого, то есть целое имеет ту же форму, что и одна или более частей). В математике под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность (в смысле Минковского или Хаусдорфа), либо метрическую размерность, отличную от топологической, поэтому их следует отличать от прочих геометрических фигур, ограниченных конечным числом звеньев.

▪️ В физике фракталы естественным образом возникают при моделировании нелинейных процессов, таких как турбулентное течение жидкости, сложные процессы диффузии-адсорбции, пламя, облака и тому подобное. Фракталы используются при моделировании пористых материалов, например, в нефтехимии. В биологии они применяются для моделирования популяций и для описания систем внутренних органов (система кровеносных сосудов). После создания кривой Коха было предложено использовать её при вычислении протяжённости береговой линии.
▪️ Использование фрактальной геометрии при проектировании антенных устройств было впервые применено американским инженером Натаном Коэном, который тогда жил в центре Бостона, где была запрещена установка внешних антенн на здания. Натан вырезал из алюминиевой фольги фигуру в форме кривой Коха и наклеил её на лист бумаги, затем присоединил к приёмнику. Коэн основал собственную компанию и наладил серийный выпуск своих антенн. C тех пор теория фрактальных антенн продолжает интенсивно развиваться. Преимуществом таких антенн является многодиапазонность и сравнительная широкополосность.
▪️ Существуют алгоритмы сжатия изображения с помощью фракталов. Они основаны на идее о том, что вместо самого изображения можно хранить сжимающее отображение, для которого это изображение (или некоторое близкое к нему) является неподвижной точкой. Один из вариантов данного алгоритма был использован фирмой Microsoft при издании своей энциклопедии, но большого распространения эти алгоритмы не получили.
▪️ Фракталы широко применяются в компьютерной графике для построения изображений природных объектов, таких как деревья, кусты, горные ландшафты, поверхности морей и так далее. Существует множество программ, служащих для генерации фрактальных изображений, см. Генератор фракталов (программа).
▪️ Система назначения IP-адресов в сети Netsukuku использует принцип фрактального сжатия информации для компактного сохранения информации об узлах сети. Каждый узел сети Netsukuku хранит всего 4 Кб информации о состоянии соседних узлов, при этом любой новый узел подключается к общей сети без необходимости в центральном регулировании раздачи IP-адресов, что, например, характерно для сети Интернет. Таким образом, принцип фрактального сжатия информации гарантирует полностью децентрализованную, а следовательно, максимально устойчивую работу всей сети.
#gif #геометрия #математика #симметрия #geometry #maths #фракталы

Пытались ли вы запрограммировать отрисовку какого-нибудь фрактала? Напишите в комментариях, а лучше покажите что у вас получилось.

🐉 Кривая дракона

👩‍💻 Множество Мандельброта

🌿 Фракталы: Порядок в хаосе [2008] В поисках скрытого измерения [Fractals. Hunting the Hidden Dimension]

🌀 10 фракталов, которые стоит увидеть

🔺 Так выглядит фрактал

👩‍💻 Треугольник Серпинского

📕 Фрактальная геометрия природы [2002] Бенуа Мандельброта

🌿 Папоротник Барнсли

📘 Фракталы повсюду Второе издание [2000] Майкл Ф. Барнсли

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2917🔥10❤‍🔥3🤯31🤷‍♂1🆒1
Media is too big
VIEW IN TELEGRAM
📝 Квадратура круга [1972] Центрнаучфильм

Детская научно – познавательная картина о древней математической загадке, названной «квадратура круга», о дальнейшей истории этой математической задачи. Квадратура круга — задача, заключающаяся в нахождении способа построения с помощью циркуля и линейки (без шкалы с делениями) квадрата, равновеликого по площади данному кругу. Наряду с трисекцией угла и удвоением куба, является одной из самых известных неразрешимых задач на построение с помощью циркуля и линейки.

Квадратура круга — задача, заключающаяся в нахождении способа построения с помощью циркуля и линейки квадрата, равновеликого по площади данному кругу.

О свойствах параболы

Наш канал с научно-техническими фильмами: 🎥 Учебные фильмы 🎞 @maths_lib

#физика #математика #моделирование #опыты #эксперименты #physics #видеоуроки #научные_фильмы #math #geometry

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4535❤‍🔥13🔥10🤩1🫡1
🌐 Задача: «Разноцветные тупоугольные треугольники на сфере»

Рассмотрим множество из n точек на единичной сфере в трёхмерном пространстве. Предположим, что никакие три точки не лежат на одном большом круге (т.е. находятся в общем положении). Это означает, что любые три точки образуют невырожденный сферический треугольник. Каждую точку мы красим в один из k цветов.

Вопрос: Каково минимальное число n(k), при котором для любой раскраски n(k) точек в k цветов обязательно найдётся одноцветный набор точек, образующий тупоугольный сферический треугольник?
Примечание: Сферический треугольник называется тупоугольным, если хотя бы один из его углов строго больше 90°.

Связь с классическими задачами: Эта задача является далёким и сложным «родственником» классической теории Рамсея. Вместо поиска моноклики в графе мы ищем конфигурацию точек с определённым геометрическим свойством (тупоугольность). Она также перекликается с задачами о хроматическом числе пространства, но на сфере и с жёстким геометрическим условием. Почему это интересно?

▪️ Геометрический комбинаторный поворот: Сочетание дискретной математики (раскраска) и непрерывной геометрии (свойства на сфере).
▪️ Нетривиальная нижняя оценка: Уже для k=2 (два цвета) задача неочевидна. Можно ли разместить много точек двух цветов так, чтобы все одноцветные треугольники были остроугольными? Это сложная задача на конструкцию.
▪️ Верхняя оценка с помощью Рамсея: Существование числа n(k) доказывается с помощью применения Теоремы Рамсея для гиперграфов, но полученная этим путём оценка будет астрономически большой. Интересно найти более разумные, «человеческие» оценки.
▪️ Открытость: Точные значения n(k) вряд ли известны даже для малых k (напр., k=2, 3). Это порождает пространство для дискуссий, гипотез и поиска частных случаев.

1. Какая конструкция для k = 2 даёт хорошую нижнюю оценку? Может использовать правильный октаэдр?
2. Как можно улучшить верхнюю оценку, используя не общий теорему Рамсея, а специфику геометрии сферы?
3. Верно ли утверждение, если заменить тупоугольность на остроугольность?
4. Как задача упростится, если мы будем рассматривать точки не на сфере, а на окружности?

Эта задача бросает вызов интуиции и требует как комбинаторной изобретательности, так и геометрического зрения. #математика #олимпиады #геометрия #комбинаторика #теория_вероятностей #math #geometry #задачи

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
32👍14🔥11🤯6🤔5😱3
Брахистохрона (от греч. βράχιστος «кратчайший» + χρόνος «время») — кривая скорейшего спуска. Задача о её нахождении была поставлена в июне 1696 года Иоганном Бернулли следующим образом:
Среди плоских кривых, соединяющих две данные точки A и B, лежащих в одной вертикальной плоскости ( B ниже A), найти ту, двигаясь по которой под действием только силы тяжести, сонаправленной отрицательной полуоси OY, материальная точка из A достигнет B за кратчайшее время.


Решением задачи о брахистохроне является дуга циклоиды с горизонтальным основанием, точка возврата которой находится в точке A, или иными словами, имеющая вертикальную касательную в точке A. Примечательно, что время спуска до нижней точки не зависит от расположения начальной точки на дуге циклоиды.

И да — это не дуга окружности, как думал ранее пытавшийся решить похожую задачу Галилео Галилей. Но что же могли сделать математики 17 века? Им было трудно. Изначально Бернулли предполагал, что решение найдется за полгода, однако затем был вынужден продлить соревнование еще на полтора. Первым на сцену вышел Исаак Ньютон, решивший задачу за одну ночь (он просто узнал про неё больше, чем через полгода). Посмотрев на анонимное решение Иоганн Бернулли воскликнул: "Узнаю льва по следу его когтя". В методе Ньютона используются чисто геометрические выводы, которые, кстати, окончательно не были строго обоснованы. Но в одном Великий был прав: кривая наискорейшего спуска является перевернутой циклоидой. #математика #опыты #геометрия #gif #анимация #видеоуроки #math #geometry #вариационное_исчисление #интегральное_исчисление

💡 Physics.Math.Code // @physics_lib
👍4324🔥7🤯3
Media is too big
VIEW IN TELEGRAM
⚙️ График, который получается в результате таких манипуляций — трохоида, у которой опорная поверхность не плоская, а имеет переменный радиус кривизны. По сути это совокупность эпитрохоид, построенных на поверхности с переменным радиусом кривизны.

Для понимания процесса нужно записать на черновике два параметрических уравнения, которые получаются, когда кругл «катится» по плоскости:
x = r⋅t - h⋅sin(t)
y = r - h⋅cos(t)

Для эпициклоиды уже сложнее:
x = R⋅(m+1)⋅cos(m⋅t) - h⋅cos((m+1)⋅t)
y = R⋅(m+1)⋅sin(m⋅t) - h⋅sin((m+1)⋅t)

где m = r/R , R — радиус неподвижной окружности (опорная поверхность), r — радиус катящейся окружности. h — расстояние от центра катящейся окружности до точки маркера (за которой мы следим, точка, которая рисует).
Ну а если тут положить R → ∞ и h → R , то мы получаем уравнения классической циклоиды, график которой описывает крайняя точка на колесе машины, которая едет с постоянной скоростью и без проскальзывания.

Математические вопросы для наших подписчиков:
▪️ Попробуйте выразить явную зависимость y(x). Получится у вас это сделать?
▪️ На видео видно, что мы получаем семейство кривых, которые после каждого полного «круга» немного смещаются. Для этого смещения обязательно ли число зубьев на маленьком колесе и число зубьев на опорной кривой должны быть взаимно простыми числами? Или достаточно лишь того, чтобы они отличались хотя бы на 1 ?

Красота параметрических кривых

⭕️ Точки пересечения кругов на воде движутся по гиперболе

🕑 Экстремальная задача на смекалку

#математика #mathematics #animation #math #геометрия #geometry #gif

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
13👍5120🔥10❤‍🔥4😱2🤩1
💤 Римановская геометрия: Когда прямая — это не самый короткий путь 🌐

Привыкли к Евклиду, где параллельные не пересекаются, а сумма углов треугольника — 180°? Забудьте на минуту. Римановская геометрия — это мир, где пространство само по себе может быть искривленным. Представьте, что вы — муравей, ползущий по поверхности апельсина. Вам кажется, что вы движетесь по прямой, но на самом деле ваш путь изгибается вместе с кожурой. Это и есть основа идей Бернхарда Римана: геометрия определяется самой поверхностью (пространством), а не навязана ей извне. Потому что пространство искривлено. И всё зависит от текущей абстракции.

Почему это не просто абстракция? Это наша Вселенная.

Общая теория относительности Эйнштейна — самое знаменитое применение римановой геометрии. Массивные объекты, такие как звёзды и планеты, искривляют пространство-время вокруг себя. Свет, движущийся «прямо», огибает их — именно так в 1919 году было получено первое подтверждение ОТО. А теперь немного малоизвестных фактов.

▪️ Факт 1: Треугольник с тремя прямыми углами.
На сфере можно построить треугольник, у которого все три угла — прямые (90°). Просто «пройдите» от экватора по нулевому меридиану до Северного полюса, поверните на 90° и спуститесь по 90-му меридиану обратно к экватору. Сумма углов = 270°.

▪️ Факт 2: Всё гениальное — не положительно.
Кривизна поверхности бывает не только положительной (как у сферы), но и отрицательной (как у седла — гиперболической параболоид). В таком мире через одну точку можно провести бесконечно много «прямых» (геодезических), не пересекающих данную линию. И сумма углов треугольника будет меньше 180°.

▪️ Факт 3: Теорема о «залысине» или «Теорема о причёсывании ежа»
Одно из самых элегантных следствий — Теорема Гаусса-Бонне. Грубо говоря, она связывает локальную кривизну поверхности с её глобальной топологией. Например, если вы будете гладить волосатый кокос (где «волосы» — это векторы), то как бы вы ни водили рукой, всегда останется хотя бы один «вихор» — точка, где кривизна не позволяет волосам лежать гладко. Это доказывает, что сферу нельзя сделать плоской, не разрывая её. На сфере (или любой другой поверхности, топологически эквивалентной сфере) невозможно гладко причесать "волосяное поле" без образования хотя бы одного вихря (или "залысины").

▪️ Факт 4: Наша Вселенная может быть конечной, но без границ.
Как и поверхность Земли конечна, но у неё нет края, так и наша 3D-Вселенная, согласно некоторым гипотезам, может быть аналогом 3-сферы — конечным объёмом, но без границ. Если бы вы полетели на космическом корабле «прямо», в итоге вы вернулись бы с обратной стороны.

Риманова геометрия — это не про заумные формулы. Это про новый язык, описывающий саму ткань реальности. От навигации GPS (где учитывается кривизна Земли) до квантовой гравитации и струнной теории — эта математика рисует карту мира, который куда причудливее и интереснее, чем нам кажется. Стол, на котором лежит ваша клавиатура или ноутбук, тоже обладает римановой геометрией. Просто его кривизна равна нулю. #математика #mathematics #animation #math #геометрия #geometry #gif

⚙️ Красота параметрических графиков — трохоида

Красота параметрических кривых

⭕️ Точки пересечения кругов на воде движутся по гиперболе

🕑 Экстремальная задача на смекалку

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍8157🔥25🤯64🤔2❤‍🔥1💯1😇1
〽️ Непрерывная везде, но не дифференцируемая нигде: визуализация функции Вейерштрасса!

В давнюю эпоху математики во многом вдохновлялись природой. Когда Ньютон разрабатывал математический анализ, он в первую очередь вдохновлялся физическим миром: траекториями планет, колебаниями маятника, движением падающего фрукта. Такое мышление привело к возникновению геометрической интуиции относительно математических структур. Они должны были иметь такой же смысл, что и физический объект. В результате этого многие математики сосредоточились на изучении «непрерывных» функций.

Но в 1860-х появились слухи о странном существе — математической функции, противоречившей теореме Ампера. В Германии великий Бернхард Риман рассказывал своим студентам, что знает непрерывную функцию, не имеющую гладких частей, и для которой невозможно вычислить производную функции в любой точке. Риман не опубликовал доказательств, как и Шарль Селлерье из Женевского университета, который писал, что обнаружил что-то «очень важное и, как мне кажется, новое», однако спрятал свои работы в папку, ставшую достоянием общественности только после его смерти несколько десятков лет спустя. Однако если бы его заявлениям поверили, то это означало бы угрозу самым основам зарождавшегося математического анализа. Это существо угрожало разрушить счастливую дружбу между математической теорией и физическими наблюдениями, на которых она была основана. Матанализ всегда был языком планет и звёзд, но как может природа быть надёжным источником вдохновения, если найдутся математические функции, противоречащие основной её сути?

Чудовище окончательно родилось в 1872 году, когда Карл Вейерштрасс объявил, что нашёл функцию, являющуюся непрерывной, но не гладкой во всех точках. Он создал её, сложив вместе бесконечно длинный ряд функций косинуса:

f(x) = cos(3x𝝅)/2 + cos(3²x𝝅)/2² + cos(3³x𝝅)/2³ + ...


Как функция она была уродливой и отвратительной. Было даже непонятно, как она будет выглядеть на графике. Но Вейерштрасса это не волновало. Его доказательство состояло не из форм, а из уравнений, и именно это делало его заявление таким мощным. Он не только создал чудовище, но и построил его на железной логике. Он взял собственное новое строгое определение производной и доказал, что для этой новой функции её вычислить невозможно. #математика #mathematics #animation #math #геометрия #geometry #gif #maths #видеоуроки #научные_фильмы #математический_анализ

💡 Physics.Math.Code // @physics_lib
👍6436🔥14🤯5❤‍🔥11
🌐 Многие ребята в школе бояться теорему косинусов. Но они даже не знают, что существует теорема косинусов для трехгранного угла 😨

Трехгранный угол — это фигура, образованная тремя лучами, исходящими из одной точки S и не лежащими в одной плоскости. Эти лучи называются ребрами, а углы между ребрами (α, β, γ) называются плоскими углами. Углы между плоскостями граней называются двугранными углами.

Тождество на картинке можно доказать, как минимум, двумя способами:
▪️ Векторно-Координатный метод)
▪️ С помощью геометрии на сфере

А существует ли ещё какое-нибудь красивое доказательство данной теоремы? Кто догадался — напишите ваши идеи в комментариях.
#геометрия #математика #олимпиады #стереометрия #geometry #задачи #problems

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
3028🔥13🤔5😭5👍4❤‍🔥3😍2🥰1🤝1
This media is not supported in your browser
VIEW IN TELEGRAM
Красота параметрических кривых

Параметрическое представление — используемая в математическом анализе разновидность представления переменных, когда их зависимость выражается через дополнительную величину — параметр. Параметризация – метод представления кривой, поверхности или объекта в пространстве с помощью одной или нескольких переменных, называемых параметрами. Параметризация позволяет описывать траекторию объекта на кривой или поверхности, изменяя значение параметра. Это гибкий подход для изучения и анализа форм и движений объектов.

#математика #mathematics #animation #math #геометрия #geometry #gif

💡 Physics.Math.Code // @physics_lib
🔥6733👍285😱2
Please open Telegram to view this post
VIEW IN TELEGRAM
24👍11❤‍🔥3🔥3😱2🤔1🤯1🆒1
Media is too big
VIEW IN TELEGRAM
⚙️ График, который получается в результате таких манипуляций — трохоида, у которой опорная поверхность не плоская, а имеет переменный радиус кривизны. По сути это совокупность эпитрохоид, построенных на поверхности с переменным радиусом кривизны.

Для понимания процесса нужно записать на черновике два параметрических уравнения, которые получаются, когда кругл «катится» по плоскости:
x = r⋅t - h⋅sin(t)
y = r - h⋅cos(t)

Для эпициклоиды уже сложнее:
x = R⋅(m+1)⋅cos(m⋅t) - h⋅cos((m+1)⋅t)
y = R⋅(m+1)⋅sin(m⋅t) - h⋅sin((m+1)⋅t)

где m = r/R , R — радиус неподвижной окружности (опорная поверхность), r — радиус катящейся окружности. h — расстояние от центра катящейся окружности до точки маркера (за которой мы следим, точка, которая рисует).
Ну а если тут положить R → ∞ и h → R , то мы получаем уравнения классической циклоиды, график которой описывает крайняя точка на колесе машины, которая едет с постоянной скоростью и без проскальзывания.

Математические вопросы для наших подписчиков:
▪️ Попробуйте выразить явную зависимость y(x). Получится у вас это сделать?
▪️ На видео видно, что мы получаем семейство кривых, которые после каждого полного «круга» немного смещаются. Для этого смещения обязательно ли число зубьев на маленьком колесе и число зубьев на опорной кривой должны быть взаимно простыми числами? Или достаточно лишь того, чтобы они отличались хотя бы на 1 ?

Красота параметрических кривых

⭕️ Точки пересечения кругов на воде движутся по гиперболе

🕑 Экстремальная задача на смекалку

#математика #mathematics #animation #math #геометрия #geometry #gif

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥2416👍7🤝4❤‍🔥32🌚1
This media is not supported in your browser
VIEW IN TELEGRAM
🟡 Демонстрация того, как кривые на первый взгляд фигуры оказываются построены исключительно из прямых линий. Здесь речь идет о гиперболоиде вращения. В геометрии гиперболоид вращения, иногда называемый круговым гиперболоидом, представляет собой поверхность, образованную вращением гиперболы вокруг одной из ее главных осей.

Гиперболоидные конструкции — сооружения в форме однополостного гиперболоида или гиперболического параболоида. Такие конструкции, несмотря на свою кривизну, строятся из прямых балок. Однополостный гиперболоид и гиперболический параболоид — дважды линейчатые поверхности, то есть через любую точку такой поверхности можно провести две пересекающиеся прямые, которые будут целиком принадлежать поверхности. Вдоль этих прямых и устанавливаются балки, образующие характерную решётку. Такая конструкция является жёсткой: если балки соединить шарнирно, гиперболоидная конструкция всё равно будет сохранять свою форму под действием внешних сил. Для высоких сооружений основную опасность несёт ветровая нагрузка, а у решётчатой конструкции она невелика. Эти особенности делают гиперболоидные конструкции прочными, несмотря на невысокую материалоёмкость. #gif #геометрия #физика #математика #math #geometry #алгебра #maths

💡 Physics.Math.Code
// @physics_lib
71👍43🔥22❤‍🔥7🤯4🤩2😱1🤝1
Please open Telegram to view this post
VIEW IN TELEGRAM
🤯54👍2614🤓9🔥71
This media is not supported in your browser
VIEW IN TELEGRAM
🌀 Траектория спирографа как функция комплексной переменной

Фигуры, получаемые с помощью спирографа (игрушечного механизма для рисования гипоциклоид и эпициклоид), — не просто красивые узоры. Это наглядная визуализация сложного гармонического движения, которое элегантно описывается языком комплексных чисел.

Математическая модель: Пусть у нас есть неподвижная окружность радиуса R и катящаяся по ней изнутри окружность радиуса r. Фиксированная точка находится на расстоянии d от центра движущейся окружности.
Ключевой факт: Положение точки в плоскости можно задать не парой координат (x, y), а одним комплексным числом z.

Тогда траектория точки спирографа задаётся параметрической функцией (параметр t — угол поворота движущей окружности): z(t) = (R - r) * exp [ (i * ((R/r) * t)) ] + d * exp[ (i * ((1 - R/r) * t)) ], где части...

▪️1. (R - r) * exp [ (i * ((R/r) * t)) ] — это движение центра малой окружности вокруг центра большой. Модуль (R-r) — расстояние между центрами, экспонента с мнимым показателем ( exp(iφ) ) задаёт вращение.

▫️2. d * exp[ (i * ((1 - R/r) * t)) ] — это вращение точки относительно центра малой окружности. Частота этого вращения относительно неподвижной системы координат иная.

Какие полезные свойства это даёт?

1. Геометрия становится алгеброй. Сложение комплексных чисел — это векторное сложение. Вся траектория есть сумма двух вращающихся векторов (фазоров).
2. Условия замкнутости (периодичности) кривой выполняются, когда отношение R/r является рациональным числом. Кривая замыкается после конечного числа оборотов.
3. Число «лепестков» или симметрий в узоре напрямую выводится из числителя и знаменателя несократимой дроби R/r.
4. Частные случаи:
— Если d = r, точка лежит на ободе катящейся окружности — получаем гипоциклоиду.
— Если R = 2r, вне зависимости от d получаем эллипс.
— При R/r = 2 и d > r траектория становится отрезком прямой (это механизм рисования линии эллипсографом).

Таким образом, спирограф — это физическая модель сложения двух комплексных экспонент, частотный спектр которых содержит две основные гармоники. Анимации, построенные на этой модели, — это прямое вычисление вещественной и мнимой части функции z(t) для каждого кадра. #математика #mathematics #animation #math #геометрия #geometry #gif #ТФКП #наука #science #комплексныечисла #спирограф #гипоциклоида

Красота параметрических кривых

Трохоида

⭕️ Точки пересечения кругов на воде движутся по гиперболе

Брахистохрона

💡 Physics.Math.Code // @physics_lib
46👍29🔥13❤‍🔥74🤩2🤓21😭1🤝1🫡1
Media is too big
VIEW IN TELEGRAM
🌀 Анимация графиков различных математических функций

„Именно математика даёт надёжнейшие правила: тому кто им следует — тому не опасен обман чувств.“ — Леонард Эйлер швейцарский, немецкий и российский математик 1707–1783

#математика #math #gif #animation #geometry

💡 Physics.Math.Code // @physics_lib
170🔥36👍21😍6🤩4🤯2🫡2👾1
Media is too big
VIEW IN TELEGRAM
📝 Квадратура круга [1972] Центрнаучфильм

Детская научно – познавательная картина о древней математической загадке, названной «квадратура круга», о дальнейшей истории этой математической задачи. Квадратура круга — задача, заключающаяся в нахождении способа построения с помощью циркуля и линейки (без шкалы с делениями) квадрата, равновеликого по площади данному кругу. Наряду с трисекцией угла и удвоением куба, является одной из самых известных неразрешимых задач на построение с помощью циркуля и линейки.

Квадратура круга — задача, заключающаяся в нахождении способа построения с помощью циркуля и линейки квадрата, равновеликого по площади данному кругу.

О свойствах параболы

Наш канал с научно-техническими фильмами: 🎥 Учебные фильмы 🎞 @maths_lib

#физика #математика #моделирование #опыты #эксперименты #physics #видеоуроки #научные_фильмы #math #geometry

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍62🔥2116😍3
This media is not supported in your browser
VIEW IN TELEGRAM
Отображения функции в окружности [ Mapping Functions to a Circle ]

«Деление = 150» означает, что на окружности круга имеется 150 равномерно расположенных точек. Окружность здесь на самом деле представляет собой просто числовую линию, заключенную в круг с использованием функции деления по модулю (x mod 150). Выбирается точка «x» , умножается на некоторый коэффициент, получается новая точка «y». Координаты этих точек соединяются в линию. Огибающая этих отрезков создает красивые узоры. Это связано с эпициклоидами и отражениями света внутри кружки.

Две формы, которые вы, скорее всего, увидите в своей кружке, — это кардиоида (y = x * 2,000) («Кардио» означает «сердце», а «-oid» означает «подобный», поэтому «кардиоида» означает «похожий на сердце») (Кардиоид выглядит как сердце) и нефроид (y = x * 3,000) («Нефро» означает «почка», поэтому «Нефроид» означает «похожий на почку») (Нефроид выглядит как почка). #математика #опыты #геометрия #gif #анимация #видеоуроки #math #geometry

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
66🔥45👍23🤩6🤯4😱2
📚 17 книг Арнольда по математике

💾 Скачать книги

🎥 Посмотреть интервью с Владимиром Арнольдом:
▪️ Сложность конечных последовательностей нулей и единиц, геометрия конечных функциональных пространств — Владимир Арнольд (Смотреть)
▪️ Владимир Арнольд / Острова / Телеканал Культура (Смотреть)
▪️ Об истории обобщенных функций Владимир Арнольд (Смотреть)
▪️ Очевидное - невероятное. Математика - наука о жизни [2003] (Смотреть)
▪️ Очевидное - невероятное. Задачи Владимира Арнольда (Смотреть)

Владимир Игоревич Арнольд (1937 — 2010) — советский и российский математик, автор работ в области топологии, теории дифференциальных уравнений, теории особенностей гладких отображений и теоретической механики. Один из крупнейших математиков XX века. #math #математика #геометрия #geometry #физика #наука #подборка_книг

💡 Physics.Math.Code // @physics_lib
34👍21🔥111🤩1
17 книг Арнольда по математике.zip
76.9 MB
📚 17 книг Арнольда по математике

📕 Обыкновенные дифференциальные уравнения 2014 Арнольд
📗 Геометрические методы в теории обыкновенных дифференциальных уравнений 2012 Арнольд
📘 Теория бифуркаций 1985 Арнольд
📔 Математическое понимание природы. Очерки удивительных физических явлений и их понимания математиками 2011 Арнольд
📙 Математические методы классической механики 1989 Арнольд
📓 Экспериментальная математика 2018 Арнольд
📒 Геометрия комплексных чисел, кватернионов и спинов 2014 Арнольд
📕 Что такое математика 2012 Арнольд
📗 Теория катастроф 1990 Арнольд
📘 Лекции об уравнениях с частными производными 1999 Арнольд
📔 Жесткие и мягкие математические модели 2000 Арнольд
📙 Особенности дифференцируемых отображений 2009 Арнольд, Варченко, Гусейн-Заде
📓 Волновые фронты и топология кривых 2018 Арнольд
📒 Топологические методы в гидродинамике 2007 Арнольд В, Хесин

„Нельзя быть настоящим математиком, не будучи немного поэтом.“ — Карл Теодор Вильгельм Вейерштрасс немецкий математик 1815 - 1897

#math #математика #геометрия #geometry #физика #наука #подборка_книг

💡 Physics.Math.Code // @physics_lib
157👍35🔥17😍3❤‍🔥21🥰1
This media is not supported in your browser
VIEW IN TELEGRAM
Торический узел — специальный вид узлов, лежащих на поверхности незаузлённого тора в ℝ³. Торическое зацепление — зацепление, лежащее на поверхности тора. Каждый торический узел определяется парой взаимно простых целых чисел p и q. Торическое зацепление возникает, когда p и q не взаимно просты. Торический узел является тривиальным тогда и только тогда, когда либо p, либо q равны 1 или -1. Простейшим нетривиальным примером является (2,3)-торический узел, известный также как трилистник.
Обычно используется соглашение, что (p, q) — торический узел вращается q раз вокруг оси тора и p раз вокруг оси вращения тора.

(p, q) — торический узел может быть задана параметризацией:
x = r⋅cos(p⋅φ)
y = r⋅sin(p⋅φ)
z = - sin(q⋅φ)
где r = cos(q⋅φ) + 2 и 0 < φ < 2π.

Он лежит на поверхности тора, задаваемого формулой (r - 2)² + z² = 1 (в цилиндрических координатах).
Параметризации могут быть другие, потому что узлы определены с точностью до непрерывной деформации. #gif #геометрия #физика #математика #math #geometry #алгебра #maths

💡 Physics.Math.Code // @physics_lib
32👍14🤔10🔥7