Physics.Math.Code
142K subscribers
5.19K photos
2.02K videos
5.81K files
4.43K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

№ 6045941532

Обратная связь: @physicist_i
Download Telegram
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ Перед ударом молнии в землю в атмосфере происходят физические процессы, связанные с образованием канала молнии, ионизацией воздуха и ролью электрического поля. Эти процессы также влияют на возникновение грома — звукового явления, сопровождающего разряд молнии. Перед основной вспышкой молнии формируется ступенчатый лидер — узкий канал ионизированного воздуха, который движется от облака к земле. Некоторые особенности процесса:
1. Электроны под действием разности потенциалов начинают двигаться к земле, сталкиваясь с молекулами воздуха, ионизируя их.
2. Из-за ионизации воздуха электропроводность в зоне траектории лидера возрастает, что создаёт путь для основного разряда.
3. Ионизация происходит неравномерно, поэтому лидер может разветвляться.

В сильном электрическом поле вблизи центра лидера происходит интенсивная ионизация атомов и молекул воздуха. Это происходит за счёт:
▪️бомбардировки атомов и молекул быстрыми электронами, вылетающими из лидера (ударная ионизация);
▪️поглощения атомами и молекулами фотонов ультрафиолетового излучения, испускаемого лидером (фотоионизация).

Для возникновения молнии необходимо, чтобы в относительно малом объёме облака образовалось электрическое поле с напряжённостью, достаточной для начала электрического разряда (~1 МВ/м), а в значительной части облака — поле со средней напряжённостью, достаточной для поддержания начавшегося разряда (~0,1–0,2 МВ/м). Однако само облако не в состоянии так наэлектризовать себя, чтобы вызвать разряд между своей нижней частью и землёй: напряжённость электрического поля в грозовом облаке никогда не превышает 400 кВ/м, а электрический пробой в воздухе происходит при напряжённости больше 2500 кВ/м.

Гром возникает в результате ударной волны, порождаемой быстрым расширением ионизированных каналов. Некоторые особенности механизма:
1. Вдоль пути разряда молнии возникает внезапное нагревание и сильное расширение воздуха, похожее на сильный взрыв.
2. Это расширение вызывает ударную волну, перемещающуюся в атмосфере и достигающую земной поверхности.
3. Обычно гром воспринимается не как отдельный резкий звук, а как ряд последовательных ударов — раскатов, которые отличаются интенсивностью и продолжаются по несколько секунд.

⚡️ Уравнения Максвелла

📙 От Кирхгофа до Планка [1981] Ханс-Георг Шёпф

⚡️ Лучшая подборка экспериментов, связанных с током [МИФИ Гервидс Валериан Иванович]

🧊 Кварц используют как источник времени в кварцевых часах 📟

⚡️ Откуда берется трехфазный ток?

⚡️ Ручной генератор для зарядки в любых условиях

#научные_фильмы #физика #электродинамика #электричество #магнетизм #science #видеоуроки #physics

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1236021🔥10🤯1🆒1
Media is too big
VIEW IN TELEGRAM
💡 Тиристор — полупроводниковый прибор, предназначенный для однонаправленного преобразования тока (ток пропускается только в одну сторону). Имеет два устойчивых состояния:
«закрытое» — состояние низкой проводимости;
«открытое» — состояние высокой проводимости.
Назначение тиристора — выполнение функции электронного выключателя (ключа). Особенность — невозможность самостоятельного переключения в закрытое состояние. Тиристор состоит из четырёх чередующихся слоёв (структура p-n-p-n). Внутри прибора находятся три p-n-перехода, которые соединены последовательно.
У тиристора есть три вывода: анод, катод и управляющий электрод (его ещё называют затвором).

Принцип работы: Переход тиристора из одного состояния в другое в электрической цепи происходит скачком (лавинообразно) и осуществляется внешним воздействием на прибор: либо напряжением (током), либо светом (для фототиристора).
Особенности работы:
▪️После перехода тиристора в открытое состояние он остаётся в этом состоянии даже после прекращения управляющего сигнала.
▪️Тиристор остаётся в открытом состоянии, пока протекающий через него ток превышает некоторую величину, называемую током удержания.
▪️Если ток снизится, тиристор автоматически закроется.

Тиристоры подразделяются, главным образом, по способу управления и проводимости. Например:
▪️Диодные (динисторы) — не содержат управляющих электродов, управляются напряжением, приложенным между основными электродами.
▪️Триодные (тринисторы) — содержат один управляющий электрод. В зависимости от того, к какому слою полупроводника подключён управляющий электрод, тринисторы бывают управляемыми по аноду и по катоду.
▪️Симметричные (симисторы) — способны проводить ток в обоих направлениях.

Применение: Тиристоры используются в схемах, где требуется надёжное включение и отключение тока, например в регуляторах мощности, фазовых переключателях и источниках питания. Также тиристоры применяются в ключевых устройствах, например, в силовом электроприводе.
#научные_фильмы #физика #электродинамика #электричество #магнетизм #science #видеоуроки #physics

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8122🔥156🥰2🌚1👻1
Media is too big
VIEW IN TELEGRAM
Симистор (симметричный триодный тиристор, триак) — полупроводниковый прибор, разновидность тиристоров, используемый для коммутации в цепях переменного тока. В электронике часто рассматривается как управляемый выключатель (ключ).

Особенность симистора — способность проводить ток в обеих полярностях, в отличие от тиристора, который работает только в одном направлении. Это позволяет использовать симисторы в цепях переменного тока без дополнительной схемы мостового выпрямления. Симистор имеет три вывода: анод, катод и управляющий электрод (Gate).

Симисторы могут быть подключены к нагрузке различными способами, в зависимости от требований схемы:
▪️ Последовательное подключение — включается последовательно с нагрузкой, наиболее распространено для управления мощностью ламп, двигателей или нагревателей.
▪️ Мостовая схема — используется в мостовой конфигурации для управления мощностью в более сложных приложениях.

Принцип работы: Процесс включения симистора начинается с подачи импульса на управляющий электрод (Gate). Когда напряжение достигает определённого порогового значения, структура симистора переходит из состояния блокировки в состояние проводимости. В это время через прибор начинает течь ток.

Особенности симисторов: Способность к самозадержке — после срабатывания (включения) симистор остаётся в проводящем состоянии до тех пор, пока ток через него не упадёт ниже определённого уровня. Этот принцип работает, даже если сигнал на управляющем электроде пропадёт.

Симисторы используются в различных устройствах, например:
▪️ регуляторы скорости электродвигателей;
▪️ преобразователи энергии;
▪️ световые регуляторы.

Существует два основных направления использования симисторов: для включения/выключения коммутации нагрузки в цепях переменного тока и для регулирования мощности, передаваемой в нагрузку путём изменения напряжения. #научные_фильмы #физика #электродинамика #электричество #магнетизм #science #видеоуроки #physics

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7630🔥145👻1
🔎 Линза Френеля представляет собой оптическую деталь со сложной ступенчатой поверхностью. Она может заменить как сферическую, так и цилиндрическую линзы, а также другие оптические детали, например, призмы, при этом ступени такой линзы могут быть разграничены концентрическими, спиральными или линейными канавками.

Идея создания более тонкой, более лёгкой линзы в виде серии кольцевых ступеней часто приписывалась Жоржу-Луи Леклерку де Бюффону. В то время как де Буффон предлагал шлифовать такую ​​линзу из одного куска стекла, маркиз де Кондорсе (1743-1794 гг.) предложил изготавливать её с отдельными секциями, установленными в раме. Французскому физику и инженеру Огюстену Жану Френелю чаще всего приписывали разработку многокомпонентной линзы для использования в маяках. Согласно журналу Smithsonian, первая линза Френеля была использована в 1823 году в Кордуанском маяке в устье лимана Жиронды; его свет можно было увидеть с расстояния более 32 км (20 миль). Шотландскому физику сэру Дейвиду Брюстеру приписывали убеждение руководства Британии использовать эти линзы в своих маяках.

💡 Линза Френеля, заменяющая сферическую линзу, состоит из концентрических колец, каждое из которых представляет собой участок конической поверхности с криволинейным профилем и является элементом поверхности сплошной линзы. Предложена Огюстеном Френелем для морских маяков. Благодаря такой конструкции линза Френеля имеет малую толщину и вес даже при большой угловой апертуре. Сечения колец у линзы построены таким образом, чтобы снижалась её сферическая аберрация, и лучи точечного источника, помещённого в фокусе линзы, после преломления в кольцах выходят практически параллельным пучком (в кольцевых линзах Френеля). #физика #оптика #опыты #видеоуроки #научные_фильмы #physics

💡 Physics.Math.Code // @physics_lib
👍5627🔥7❤‍🔥21
🕯🔍 Шлирен-метод (от нем. Schlieren — оптическая неоднородность) — способ обнаружения оптических неоднородностей в прозрачных, преломляющих средах, и выявления дефектов отражающих поверхностей.
Иногда его называют методом Тёплера — по имени автора, немецкого физика Августа Тёплера.

Шлирен-метод, разработанный в 1864 году Августом Тёплером, является развитием предложенного в 1857 году теневого метода Леона Фуко, разработанного для контроля геометрии при изготовлении сферических зеркал телескопов. Заключался метод Фуко в том, что проверяемое зеркало освещали точечным источником света. В центр кривизны сферы помещали непрозрачный экран с острой кромкой, затеняющий в формируемом изображении точечный источник, но не препятствующий лучам, рассеянным зеркалом из-за нарушения геометрии. Позднее такой экран стали называть ножом Фуко.

Если поверхность зеркала была строго сферичной, нож, перекрывая основной световой поток точечного источника, равномерно затенял формируемое зеркалом изображение. Если сфера имела дефекты — формируемое изображение, в зависимости от знака и степени ошибки радиуса локальной кривизны, имело светлые или тёмные области. Ориентируясь по такой разной освещённости, проводили дошлифовку зеркала.

Шлирен-метод получил особенно широкое распространение для визуализации различных процессов в воздушной среде. Это относится, например, к исследованиям распределения плотности воздушных потоков образующихся при обтекании моделей в аэродинамических трубах, то есть, в авиационной технике. Применяется, также в механике жидкости, баллистике, изучении распространения и смешивания газов и растворов, исследовании теплообмена за счет конвекции и т. п.
#physics #наука #физика #термодинамика #эксперименты #опыты #видеоуроки #научные_фильмы

💡 Physics.Math.Code // @physics_lib
28👍22🔥13🤯2👻2
This media is not supported in your browser
VIEW IN TELEGRAM
🪙 Разбираемся в пайке: Советы по соотношению олова и свинца и их влиянию

Эволюция технологий пайки в электронной промышленности ознаменовалась кардинальным переходом от традиционных припоев на основе свинца к экологически безопасным бессвинцовым альтернативам. В течение многих лет пайка на основе свинца, в основном с использованием сплавов олово-свинец, была отраслевым стандартом, ценившимся за доступность и превосходные физические свойства. Однако растущая осведомленность об опасностях для окружающей среды и здоровья, связанных со свинцом, привела к ужесточению правил, что побудило к исследованию и внедрению решений для бессвинцовой пайки. Припой на основе свинца относится к типу припоя, который содержит свинец в качестве одного из основных компонентов. Наиболее распространенной рецептурой припоя на основе свинца является сплав олово-свинец (Sn-Pb), в котором соотношение олова и свинца обычно составляет около 60:40. Это определенное соотношение часто называют эвтектическим составом, где сплав имеет определенную температуру плавления, что позволяет ему напрямую переходить из твердого состояния в жидкое и наоборот.

Бессвинцовый припой — это тип припоя, который не содержит свинца в качестве одного из своих основных компонентов. Переход к бессвинцовой пайке вызван проблемами окружающей среды и здоровья, связанными с использованием припоев на основе свинца. Различные бессвинцовые припои были разработаны в качестве альтернативы традиционному припою олово-свинец (Sn-Pb) с целью сохранить рабочие характеристики и надежность паяных соединений, одновременно устраняя токсичное воздействие свинца. Температура плавления бессвинцового припоя может находиться в диапазоне от 50 до 200 °C и выше. Для достаточной смачивающей способности бессвинцового припоя требуется примерно 2% флюса по массе.

Доступно несколько бессвинцовых припоев, и производители могут выбрать тот, который лучше всего соответствует их конкретным требованиям. Некоторые распространенные бессвинцовые припои включают в себя:
▪️ Олово-Висмут (Sn-Bi): Этот сплав имеет более низкую температуру плавления по сравнению с другими бессвинцовыми альтернативами, что делает его пригодным для применений, где желательны более низкие температуры пайки.
▪️ Олово-Серебро (Sn-Ag): Этот сплав без меди является еще одним популярным бессвинцовым сплавом. Он обеспечивает хорошую стойкость к термической усталости и широко используется в производстве электроники.
▪️ Олово-Цинк (Sn-Zn): Этот сплав используется в некоторых составах бессвинцовых припоев, предлагая альтернативу без использования серебра или меди.

#пайка #химия #схемотехника #физика #physics #видеоуроки #научные_фильмы #опыты

💡 Physics.Math.Code // @physics_lib
👍5628🤔7🔥4🙈1
💡 Физика вокруг нас всегда. И от знания законов физики может зависеть ваша жизнь. Наглядно рассмотрим пример, в котором кроется не только простейшая школьная механика, но и сложная теория колебаний, теория устойчивости дифференциальных уравнений.

⚙️ Правильная развесовка прицепа — залог безопасности движения.

Если вы уложите самые грузные вещи в хвост, то сделаете грубую и, возможно, непоправимую ошибку. При смещении центра тяжести далеко назад прицеп начнет сильно заносить, и этот занос будет развиваться по принципу маятника. Так что погасить это раскачивание очень сложно. Опасность ситуации также в том, что занос может вынести весь автопоезд на встречную полосу со всеми вытекающими последствиями.
#physics #физика #механика #опыты #видеоуроки #научные_фильмы

👨🏻‍💻 Physics.Math.Code // @phjysics_lib
👍8023🔥10💯5🤝2🤯1
⚡️ Электрический водяной мостик 💧

Если в стаканы поместить электроды и подать на них высокое напряжение, то деионизированная вода образует стабильный цилиндрический мост между двумя стаканами. Толщина мостика зависит от величины напряжения и, соответственно, проходящего тока.

Когда между двумя стаканами с водой создаётся разность потенциалов около 10 кВ, между стаканами может возникнуть тонкий водяной мостик. Силы поверхностного натяжения удерживают его на весу, а силы электрического давления не дают мостику распасться на отдельные капли. #gif #опыты #видеоуроки #физика #научные_фильмы #physics

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍54🔥23215🤔2
Media is too big
VIEW IN TELEGRAM
👩‍💻 Ричард Фейнман: Fun to Imagine. Полная версия [FHD качество]

Это интервью было снято у Ричарда Фейнмана дома и показано на канале BBC2, в виде нескольких коротких серий, в период с 8 июля по 12 августа 1983.
0:00:50 Колеблющиеся атомы
0:07:18 Огонь
0:12:08 Резиновые жгуты
0:14:54 Магниты
0:22:29 Электричество
0:32:06 Загадки о зеркале и поезде
0:37:46 Чудо зрения
0:43:40 Большие числа
0:55:01 Способы думать

#physics #math #математика #научные_фильмы #видеоуроки #физика #science #наука

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥7130👍16🤩41🌚1🗿1
This media is not supported in your browser
VIEW IN TELEGRAM
🛁 Эффект Лейденфроста — это явление, при котором жидкость в контакте с телом значительно более горячим, чем точка кипения этой жидкости, создаёт изолирующий слой пара, который предохраняет жидкость от быстрого выкипания. Явление названо в честь немецкого врача Иоганна Готтлоба Лейденфроста, который описал его в «Трактате о некоторых свойствах обыкновенной воды» в 1756 году.

Основная причина эффекта — это практически мгновенное испарение нижней части капли при контакте с раскалённой поверхностью. В этот момент происходит образование прослойки пара, которая как бы «подвешивает» неиспарившуюся часть капли над раскалённой поверхностью, не давая жидкости вступить с ней в прямой контакт.

В повседневной жизни явление можно наблюдать при приготовлении пищи: для оценки температуры сковороды на неё брызгают водой — если температура достигла или уже выше точки Лейденфроста, вода соберётся в капли, которые будут «скользить» по поверхности металла и испаряться дольше, чем если бы это происходило в сковороде, нагретой выше точки кипения воды, но ниже точки Лейденфроста. #физика #термодинамика #мкт #опыты #эксперименты #physics #видеоуроки #научные_фильмы

💧 Капля воды падающая на горячий металл 💥в Slow motion


💧 Эффект Лейденфроста

🚀 Что будет, если добавить жидкий газ в бутылку с водой

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍80🔥3631🤩8
⚙️ Подборка очень интересных учебных видео о физике работе ДВС

1. Как устроен автомобильный двигатель. 3D анимация сборки автомобильного двигателя внутреннего сгорания.
2. Как работает двухтактный двигатель скутера
3. Двигатель в разрезе
4. Как работает паровой двигатель
5. Двигатель Стирлинга
6. Миниатюрный паровой двигатель
7. Мини-двигатель с AliExpress
8. Паровой или реактивный двигатель
9. Конструкция ДВС
10. Конструирование систем смазки и охлаждения ДВС
#физика #physics #механика #видеоуроки #научные_фильмы #ДВС #техника #опыты #лекции

🐝 «Nano Bee». Двигатель объемом 0,006 см³

Самый маленький четырехцилиндровый ДВС в мире

Звёздообразный или радиальный двигатель

⚙️ Сферически объемная роторная машина и ещё немного о необычных вариантах ДВС.

⚙️ Роторный двигатель

💥💨 Как работает двухтактный двигатель скутера

⚙️ Сравнение моторных масел

⚙️ Авиационный гироскоп


💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍50🔥1512❤‍🔥4🤩21
This media is not supported in your browser
VIEW IN TELEGRAM
⚙️ Основное отличие двухтактного и четырёхтактного двигателей внутреннего сгорания (ДВС) заключается в количестве тактов — движений поршня, за которые происходит рабочий цикл. В двухтактном двигателе рабочий цикл совершается за один оборот коленчатого вала, в четырёхтактном — за два оборота.

▪️Двухтактный двигатель. Принцип работы: один полный рабочий цикл (впуск, сжатие, рабочий ход и выпуск) происходит за два такта поршня.
— Отдельного газораспределительного механизма нет — роль впускных и выпускных клапанов выполняют отверстия в стенках цилиндра.
— Топливо обычно смешивается с маслом для смазки движущихся частей.
— Мощность двухтактного двигателя при одинаковых размерах цилиндра и частоте вращения вала теоретически в два раза больше четырёхтактного за счёт большего числа рабочих циклов. Однако неполное использование хода поршня для расширения и затраты части вырабатываемой мощности на продувку приводят к увеличению мощности только на 60–70%.

▪️Четырехтактный двигатель. Принцип работы: рабочий цикл состоит из четырёх тактов (ходов поршня).
— Для переключения полости цилиндра на впуск и на выхлоп используется отдельный газораспределительный механизм.
— Каждая фаза газообмена выполняется во время отдельного полуоборота коленчатого вала.
— Расход топлива ниже, так как топливная смесь полностью сгорает в цилиндре, и только потом, когда открывается выпускной клапан, отработанные газы выходят наружу.
— Экологичность — за счёт полного сгорания топливной смеси выделяется меньше вредных веществ в атмосферу.
#физика #physics #механика #видеоуроки #научные_фильмы #ДВС #техника #опыты #лекции

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8031🔥10❤‍🔥31
Media is too big
VIEW IN TELEGRAM
📝 Квадратура круга [1972] Центрнаучфильм

Детская научно – познавательная картина о древней математической загадке, названной «квадратура круга», о дальнейшей истории этой математической задачи. Квадратура круга — задача, заключающаяся в нахождении способа построения с помощью циркуля и линейки (без шкалы с делениями) квадрата, равновеликого по площади данному кругу. Наряду с трисекцией угла и удвоением куба, является одной из самых известных неразрешимых задач на построение с помощью циркуля и линейки.

Квадратура круга — задача, заключающаяся в нахождении способа построения с помощью циркуля и линейки квадрата, равновеликого по площади данному кругу.

О свойствах параболы

Наш канал с научно-техническими фильмами: 🎥 Учебные фильмы 🎞 @maths_lib

#физика #математика #моделирование #опыты #эксперименты #physics #видеоуроки #научные_фильмы #math #geometry

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4534❤‍🔥13🔥9🤩1🫡1
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 В древние времена среди металлов наибольшим спросом пользовалась медь. Её добывали из россыпей и плавили из руды. Зародилась медная металлургия в Анатолии, а потом постепенно стала распространяться по Евразии. Самым древним сплавом является мышьяковистая медь, которую получали из золотистого мышьяковистого минерала аурипигмента и смеси медной руды еще в IV тыс. до н.э. Во II тыс. до н.э. на смену мышьяковистой меди пришла оловянная бронза, которая на Кикладских островах (Греция) была известна уже в III тыс. до н.э. В гончарных мастерских происходила плавка металлов, в процессе которой удавалось обнаружить сплавы с разными температурами плавления и легкоплавкие из них использовались в качестве припоя.

Результаты археологических раскопок позволяют утверждать, что пайка как средство соединения металлов известна человеку не мене пяти тысячелетий. В 1927-1928 гг. археолог Леонард Вуллей при раскопках города Ура на Евфрате обнаружил гробницу царицы Шуб-ат с золотыми сосудами, ручки которых были припаяны серебряно-золотым сплавом. Всё это относится к 3500 году до н.э. #факты #пайка #металлы #железо #химия #научные_фильмы #gif

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍85🔥3320❤‍🔥5🆒42😱1😈1
This media is not supported in your browser
VIEW IN TELEGRAM
🌀 Различия в свойствах мягких припоев

Эти обозначения (# Tin или # Sn) не указывают напрямую на химический состав, а указывают на прочность на растяжение (tensile strength) припоя, выраженную в фунтах на квадратный дюйм (psi). Давайте разберем по порядку.

▪️ # в данном контексте означает "фунт" (pound). Цифра перед ним — это значение прочности на растяжение в тысячах фунтов на квадратный дюйм (ksi).

▪️ Примеры: 45# Sn означает припой с прочностью на растяжение 45 000 psi. или 99# Tin означает припой с прочностью на растяжение 99 000 psi.
Чем выше это число, тем прочнее соединение, полученное с помощью этого припоя.

▪️ Tin (англ.) или Sn (лат. Stannum) — это Олово. Указание "Tin" или "Sn" говорит о том, что этот припой содержит олово, но не говорит о его точном процентном содержании.

▪️ Эта система (ASTM B32) была распространена в США до того, как повсеместно стали использовать маркировку по химическому составу. Со временем для самых популярных марок сложились устойчивые соответствия.
30# Tin / Sn — Аналог ПОС-50 — Sn50Pb50 (50% олова, 50% свинца) — Радиомонтаж, общие работы. Низкая температура плавления.
45# Sn — Близок к ПОС-40 — Sn40Pb60 (40% олова, 60% свинца) — Более тугоплавкий, для неответственных соединений.
63# Sn — ПОС-63 (самый распространенный) — Sn63Pb37 (63% олова, 37% свинца) — Эвтектический припой. Идеален для электромонтажа: низкая Тпл, быстро переходит из жидкой в твердую фазу, мало склонен к образованию "холодных паек".
99# Tin — Sn95Sb5 (95% олова, 5% сурьмы) — Бессвинцовый припой. Высокая прочность, используется для пайки трубопроводов, радиаторов, в пищевой промышленности. Устойчив к ползучести и усталости.

Совет: Для современного электромонтажа (пайка электроники) золотым стандартом долгое время был 63# Sn (Sn63Pb37). Сейчас, с переходом на бессвинцовые технологии, чаще используются составы типа SAC305 (Sn96.5Ag3.0Cu0.5), которые маркируются уже по своему химическому составу. #факты #пайка #металлы #железо #химия #научные_фильмы #gif

🔥 В древние времена среди металлов наибольшим спросом пользовалась....

🔥 Сварка трением (фрикционная сварка)

Как сделать сварочный аппарат из карандаша и лезвия

Какой флюс для пайки самый лучший на сегодняшний день?

🪙 Разбираемся в пайке: Советы по соотношению олова и свинца и их влиянию

🔥 10 флюсов для пайки: сравнение, тесты и какой реально стоит использовать мастеру

🔥 Сварка под слоем флюса

Мартенсит

⛓️‍💥 Какие только технологии не применяли в СССР

⚡️ Большие токи в нескольких витках провода вызывают существенное магнитное поле.

💥 Лазерная сварка с разной формой луча

🔥 Spot-сварка

💥 Импульсная аргонодуговая сварка

💥 Электросварка и плавление электрода 💫

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥47👍30253🤩21🙈1
🕯🔍 Шлирен-метод (от нем. Schlieren — оптическая неоднородность) — способ обнаружения оптических неоднородностей в прозрачных, преломляющих средах, и выявления дефектов отражающих поверхностей.
Иногда его называют методом Тёплера — по имени автора, немецкого физика Августа Тёплера.

Шлирен-метод, разработанный в 1864 году Августом Тёплером, является развитием предложенного в 1857 году теневого метода Леона Фуко, разработанного для контроля геометрии при изготовлении сферических зеркал телескопов. Заключался метод Фуко в том, что проверяемое зеркало освещали точечным источником света. В центр кривизны сферы помещали непрозрачный экран с острой кромкой, затеняющий в формируемом изображении точечный источник, но не препятствующий лучам, рассеянным зеркалом из-за нарушения геометрии. Позднее такой экран стали называть ножом Фуко.

Если поверхность зеркала была строго сферичной, нож, перекрывая основной световой поток точечного источника, равномерно затенял формируемое зеркалом изображение. Если сфера имела дефекты — формируемое изображение, в зависимости от знака и степени ошибки радиуса локальной кривизны, имело светлые или тёмные области. Ориентируясь по такой разной освещённости, проводили дошлифовку зеркала.

Шлирен-метод получил особенно широкое распространение для визуализации различных процессов в воздушной среде. Это относится, например, к исследованиям распределения плотности воздушных потоков образующихся при обтекании моделей в аэродинамических трубах, то есть, в авиационной технике. Применяется, также в механике жидкости, баллистике, изучении распространения и смешивания газов и растворов, исследовании теплообмена за счет конвекции и т. п.
#physics #наука #физика #термодинамика #эксперименты #опыты #видеоуроки #научные_фильмы

💡 Physics.Math.Code // @physics_lib
🔥51👍2817❤‍🔥2🆒2👏1🤯1🤩1
📚 4 лекции по теме: Конечные поля. // Константин Шрамов / ЛШСМ 2024

⭕️ Поле в алгебре — множество, для элементов которого определены операции сложения, взятия противоположного значения, умножения и деления (кроме деления на ноль), причём свойства этих операций близки к свойствам обычных числовых операций. Простейшим полем является поле рациональных чисел (дробей). Элементы поля не обязательно являются числами, поэтому, несмотря на то, что названия операций поля взяты из арифметики, определения операций могут быть далеки от арифметических.

Поле — основной предмет изучения теории полей. Рациональные, вещественные, комплексные числа, рациональные функции и вычеты по модулю заданного простого числа образуют поля.

Поле — это множество, в котором можно складывать, умножать, вычитать и делить. Например, это можно делать с рациональными, действительными или комплексными числами. Помимо этого, такие операции можно производить и в некоторых конечных множествах — они и называются конечными полями. В начале курса я расскажу про самые простые свойства конечных полей: порядок конечного поля, единственность конечного поля данного порядка, структуру мультипликативной группы. Потом мы обсудим существование решений над конечными полями у полиномиальных уравнений, степень которых мала по сравнению с количеством переменных (теорема Шевалле-Варнинга), и обсудим применения конечных полей к вопросам, которые формулируются над полем комплексных чисел (например, существование неподвижных точек у инволюций аффинного пространства).

Шрамов Константин Александрович — доктор физико-математических наук.

#научные_фильмы #математика #algebra #math #алгебра

💡 Physics.Math.Code // @physics_lib
43👍20🔥7🤩7
💫 Ричард Фейнман: 7 лекций о связи математики и физики // Характер физических законов

Сборник лекций, прочитанных во время традиционных Мессенджеровских чтений в Кориеллском университете (в 1964 г.) известным физиком-теоретиком Р. Фейнманом. В этих лекциях, обращаясь к очень широкой аудитории, Фейнман рассказывает о самых фундаментальных законах природы, о том, как их открывают, каковы их особенности. Во второе издание перевода (1-е-«Мир», 1968 г.) внесены некоторые редакционные изменения.
▪️ Лекция 1. Пример физического закона - закон тяготения
▪️ Лекция 2. Связь математики с физикой
▪️ Лекция 3. Великие законы сохранения
▪️ Лекция 4. Симметрия физических законов
▪️ Лекция 5. Различие прошлого и будущего
▪️ Лекция 6. Вероятность и неопределенность - квантовомеханический взгляд на природу
▪️ Лекция 7. В поисках новых законов
#physics #физика #лекции #видеоуроки #научные_фильмы #наука

💡 Physics.Math.Code // @physics_lib
76👍34❤‍🔥6🔥41😍1
Media is too big
VIEW IN TELEGRAM
⚡️ Опыты Фарадея 🧲

29 августа 1831 года знаменитый английский физик Майкл Фарадей после 10 лет экспериментов открыл явление электромагнитной индукции. Это явление состоит в возникновении ЭДС индукции в замкнутом контуре при изменении магнитного потока через поверхность, ограниченную этим контуром.

Некоторые опыты Майкла Фарадея, которые имеют наибольшее значение для теории электромагнетизма:

🔸 Опыт с катушкой и магнитом. Взаимодействие движущегося магнита и катушки, намотанной из проводника, порождает электрический ток. При введении магнита в катушку в цепи возникает электрический ток одного направления (стрелка гальванометра отклоняется, например, вправо), при выведении магнита из катушки стрелка отклоняется в противоположную сторону.

🔸 Опыт с двумя катушками. По одной из них пропускали ток, к другой был подключён гальванометр. В момент начала или окончания пропускания тока по первой катушке стрелка гальванометра, подключённого ко второй, колебалась. Этот опыт показывал, что не только магнетизм можно превратить в электричество, но и электричество в магнетизм.

Видеопримеры по теме:

🔥 Индукционный нагрев

💫 «Гроб Мухаммеда»

🧲 Как работают трансформаторы?

⚡️ Основные физические понятия электродинамики (Леннаучфильм)

Взаимодействие зарядов. Электростатическая индукция

💫 Исследование электрических полей. Опыт по физике

⚡️ Уравнения Максвелла

⚙️ Электромагнитная подвеска 🧲

#видеоуроки #physics #физика #опыты #электродинамика #электричество #магнетизм #эксперименты #научные_фильмы

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍40🔥18146