Physics.Math.Code
150K subscribers
5.23K photos
2.21K videos
5.82K files
4.58K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

Обратная связь: @physicist_i
Download Telegram
Media is too big
VIEW IN TELEGRAM
🧲⚡️Задачка по физике [электродинамика и магнетизм] для наших подписчиков: Почему поезд приходит в движение? Откуда возникает сила, толкающая вперед?

На видео простейший поезд на магнитах (из батарейки, магнитов и медного провода)

#физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика

💡 Physics.Math.Code // @physics_lib
2🔥3117👍112❤‍🔥1👏1🆒1
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ Электрическое солнце на улицах: Угольные дуговые фонари XIX века

До середины 19 века ночной город погружался во тьму, которую лишь кое-как рассеивали тусклые газовые рожки и масляные фонари. Но все изменилось с появлением настоящего «электрического солнца» — фонаря с угольной дугой. Это была первая по-настоящему эффективная форма электрического освещения, которая ослепила современников и навсегда изменила представление о ночном городе. В основе фонаря лежало явление вольтовой дуги — особого вида электрического разряда в газе.

▪️ Суть явления: Если два электрода (в нашем случае — угольных стержня) сначала коснуться, а затем немного раздвинуть, между ними продолжает течь электрический ток. Но теперь он проходит не по проводнику, а через ионизированный воздух — плазму.

▪️ Почему она светится: Электрическое поле в зазоре между электродами разгоняет свободные электроны. Эти "разогнанные" электроны сталкиваются с атомами газа (азота, кислорода) и "выбивают" из них другие электроны. Этот процесс называется ионизацией. При столкновениях часть энергии переходит в свет и колоссальное тепло. Температура в центре дуги может достигать 4000 °C — это выше температуры плавления большинства известных материалов.

🔦 Процесс горения дуги: как это работало в фонаре?

1. Зажигание: Фонарщик (или позднее автоматический механизм) сближал два угольных стержня до момента их соприкосновения. По цепи начинал течь ток.
2. Поджиг и разрыв: Концы стержней сильно разогревались из-за высокого сопротивления в точке контакта. Затем механизм немного (на несколько миллиметров) раздвигал стержни.
3. Рождение "солнца": Между раскаленными концами углей возникала та самая вольтова дуга. Воздух ионизировался, и мощный поток света и тепла устремлялся наружу. Свет был настолько ярок, что смотреть на него без защиты было больно для глаз.
4. Стабилизация и выгорание: Угольные стержни постепенно сгорали в этом адском пламени. Чтобы дуга не гасла, сложный механизм (регулятор) постоянно поддерживал идеальное расстояние между ними, медленно сдвигая стержни по мере их испарения.

Почему именно угольные стержни? Почему не медные или железные прутья? Ответ кроется в уникальных свойствах угля (графита):

1. Высокая температура плавления (возгонки): Уголь не плавится, как металл, а сразу переходит из твердого состояния в газообразное (сублимируется) при температуре около 3900 °C. Это одна из самых высоких температур среди известных тогда материалов. Металлический электрод просто расплавился бы и испарился за секунды, в то время как уголь мог относительно стабильно работать в плазме дуги.
2. Эмиссия электронов: Раскаленный уголь является отличным эмиттером электронов. При высоких температурах электроны в его атомах получают достаточно энергии, чтобы "вырваться" с поверхности и устремиться к противоположному электроду. Этот "электронный паром" — основа для поддержания стабильной дуги.
3. Хорошая электропроводность: Чистый уголь (графит) проводит электрический ток, что является обязательным условием для работы.
4. Относительная дешевизна: Угольные стержни было проще и дешевле производить в больших количествах, чем, например, стержни из тугоплавких металлов вроде вольфрама (которые стали использовать позже).

Несмотря на свою яркость, угольные дуговые фонари были неидеальны. Они требовали постоянного обслуживания (замены стержней каждые несколько часов), издавали шипение и характерный запах озона, а главное — были слишком мощными для небольших помещений. Их время пришлось на конец 19 - начало 20 века, когда они освещали главные площади, проспекты и фабрики. Но именно они проложили путь для своей более практичной и долговечной преемницы — лампы накаливания Лодыгина и Эдисона. #физика #опыты #эксперименты #наука #science #physics #электродинамика #видеоуроки #изобретения #радиофизика

⚡️ Фигуры Лихтенберга

🧲 Почему поезд приходит в движение?

📚 Фейнмановские лекции по физике [1976-1978] 💫

⚡️ Первые цветные кадры термоядерного синтеза: как это сняли? 🥺

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
1🔥4127👍1511
Media is too big
VIEW IN TELEGRAM
👩‍💻Самая большая в мире вакуумная камера. В этой камере проводили эксперимент, который подтвердил теорию Галилея относительно ускорения свободного падения. Суть опыта: с одинаковой высоты в один момент времени отпустили шар для боулинга и несколько перьев. В замедленной съёмке показали, что оба объекта ускоряются одинаково и достигают плоскости Земли одновременно. Это произошло потому, что на них не действует сопротивление воздуха, так как объекты находились в вакууме.

Space Power Facility (сокр. SPF) — крупнейшая в мире термальная вакуумная камера, созданная НАСА в 1969 году. Расположена на станции Плам-Брук, неподалёку от Сандаски. Станция Плам-Брук, в свою очередь, является частью Исследовательского центра Гленна, расположенного в Кливленде. Изначально предназначалась для ядерно-электрических испытаний в условиях вакуума, однако испытания были отменены, а камера законсервирована. В дальнейшем камера использовалась для проведения испытаний двигательных установок космических аппаратов и их систем. Кроме того, в данной камере проводились испытания работоспособности защитных систем приземления в условиях, приближенных к марсианским, для марсоходов Mars Pathfinder и проектах серии Mars Exploration Rover.

Размеры SPF составляют более 30 метров в диаметре и 40 метров - в высоту. По своему устройству SPF представляет собой огромный алюминиевый контейнер, заключённый в бетонный купол. Алюминиевый контейнер состоит из плотных рядов пластин из алюминиевого сплава Type 5083, подогнанных друг к другу таким образом, чтобы не пропускать воздух. #физика #механика #опыты #physics #эксперименты #наука #science #видеоуроки #кинематика #моделирование

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥57👍3019🤨2🆒2❤‍🔥1🤓1
This media is not supported in your browser
VIEW IN TELEGRAM
🥺 Магнито-музыка в электронном устройстве 🧲

Визуализация окружающих звуков с помощью ферромагнитной жидкости и электромагнита. Есть предположение, что внешний звук поступает в устройство через микрофон, а затем преобразуется в электромагнитные импульсы, а переменное магнитное поле заставляет двигаться каплю ферромагнитное жидкости.

#физика #магнетизм #электродинамика #опыты #эксперименты #physics #видеоуроки #научные_фильмы #science

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4519🔥164🤯4
This media is not supported in your browser
VIEW IN TELEGRAM
🟢 Капля ртути, которая включала свет: забытая магия советских выключателей ⚡️

На видео ртутный выключатель (или ртутный геркон). Удивительное и немного алхимическое устройство, которое многие помнят из советских приборов. Как это работает? Внутри стеклянной колбочки находятся два контакта и капля ртути. Пока выключатель находится в одном положении, контакты разомкнуты. Но стоит его наклонить — капля ртути скатывается и замыкает их, замыкая цепь. Никаких щелчков, только плавное замыкание.

Концепция использования ртути для замыкания цепи известна давно, но массовое применение в таких миниатюрных стеклянных корпусах стало возможным с развитием технологии герконов (герметизированных контактов) в середине XX века. Сложно назвать одного изобретателя; это была скорее эволюция технологий, подхваченная инженерами по всему миру, включая СССР.

💭 Где они использовались? Эти выключатели были незаменимы там, где важна была плавность срабатывания и защита от искры (которая могла бы вызвать взрыв в загазованной среде).

1. Советские игрушки и электромеханика: Легендарный набор «Знаток», различные конструкторы.
2. Автомобили: В старых «Жигулях» и «Москвичах» ртутные выключатели использовались в датчиках уровня тормозной жидкости. Жидкость опускалась — датчик наклонялся — загоралась лампочка на панели.
3. Бытовая техника: В некоторых моделях стиральных машин (например, «Вятка-автомат») они служили датчиками уровня воды.
4. Системы сигнализации: Использовались как датчики наклона для защиты ценных предметов. Стоило сдвинуть предмет — цепь замыкалась, включалась тревога.
5. Термостаты в некоторых моделях обогревателей.

Физика в действии: почему именно ртуть?

▪️ Высокая электропроводность: Ртуть — это жидкий металл, поэтому она отлично проводит ток.
▪️ Подвижность: Благодаря жидкому состоянию, она мгновенно и плавно замыкает контакты без дребезга, который характерен для обычных металлических пластин.
▪️ Поверхностное натяжение: Капля ртути не растекается, а сохраняет форму шара, что позволяет ей точно скатываться по нужной траектории.
▪️ Высокая плотность: Ртуть тяжелая, поэтому она уверенно скатывается даже при небольшом наклоне.

Почему от них отказались? Главная причина — токсичность ртути. Разбитая колбочка с парами ртути — это реальная опасность для здоровья. С развитием электроники им на смену пришли более безопасные и дешёвые твердотельные датчики: шариковые, MEMS-гироскопы и акселерометры в смартфонах, оптические датчики. #физика #магнетизм #электродинамика #опыты #эксперименты #physics #видеоуроки #электроника #science

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍10643🔥218🤔4🤩4❤‍🔥1
Конденсационная камера — принцип действия и источник альфа-частиц
😖 Конденсационная камера — радиационный фон

Камера Вильсона (конденсационная камера, туманная камера) — координатный детектор быстрых заряженных частиц, в котором используется способность ионов выполнять роль зародышей капель жидкости в переохлажденном перенасыщенном паре.

Для создания переохлаждённого пара используется быстрое адиабатическое расширение, сопровождающееся резким понижением температуры.

Быстрая заряженная частица, двигаясь сквозь облако перенасыщенного пара, ионизирует его. Процесс конденсации пара происходит быстрее в местах образования ионов. Как следствие, там, где пролетела заряженная частица, образуется след из капелек воды, который можно сфотографировать. Именно из-за такого вида треков камера получила свое английское название — облачная камера (англ. cloud chamber).

Камеры Вильсона обычно помещают в магнитное поле, в котором траектории заряженных частиц искривляются. Определение радиуса кривизны траектории позволяет определить удельный электрический заряд частицы, а, следовательно, идентифицировать её.

Камеру изобрел в 1912 году шотландский физик Чарльз Вильсон. За изобретение камеры Вильсон получил Нобелевскую премию по физике 1927 года. В 1948 за совершенствование камеры Вильсона и проведенные с ней исследования Нобелевскую премию получил Патрик Блэкетт. #физика #радиактивность #physics #science #ядерная_физика #видеоуроки #наука #опыты #эксперименты

🖥 How Scientists Discovered Atoms? // Как ученые открыли атомы?

💫 Тайна вещества. Научно-популярный фильм СССР 1956 г.

🔥 В СССР делали радиоизотопные термоэлектрические генераторы (РИТЭГи).

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
36👍17🔥102🥰2🤩1🙈1
Media is too big
VIEW IN TELEGRAM
🔥Оказывается, если объект одинаковой температуры с окружающей средой (столом), его можно подсветить феном в тепловизоре. Разные материалы нагреются по разному и угол над стороной нагрева тоже важен, поэтому даже одинаковый материал за счет геометрии (углов) начнет выделяться.

Почему это работает:
Разные материалы имеют разную теплоёмкость и теплопроводность. От одного и того же теплового импульса металл и пластик нагреются по-разному.
В игру вступает геометрия. Даже у однородного объекта края и грани будут прогреваться иначе, чем плоские поверхности, из-за разного угла к потоку воздуха.

Итог: на монотонном тепловом фоне проступают четкие контуры и внутренняя структура предмета, которые были абсолютно невидимы до нагрева некоторое время назад. Тепловизор показывает только температуру, на его самое важное свойство — отследить изменения по отношению к другим предметам.

Факты из физики:

1. Материал. Металлические пассатижи и пластиковый стол или ручки получат одинаковую "дозу" тепла. Но металл (высокая теплопроводность) быстро распределит его по себе и отдаст столу, а пластик (низкая теплопроводность) — останется горячим дольше и будет ярко светиться.

2. Геометрия. Острый угол или ребро предмета будут обдуваться интенсивнее и прогреваться сильнее, чем плоская поверхность, обращенная к фону. Из-за этого контур объекта "проявится" даже если он сделан из одного материала.

Этот принцип лежит в основе многих методов неразрушающего контроля, когда нужно найти дефект под поверхностью.

Автор видео: @Enigma1938

🔥 Тепловой взрыв при изохорическом нагревании газа 💨

🔥 Индукционный нагрев

🪙 Монета против силы тока⚡️

#видеоуроки #physics #физика #опыты #электродинамика #электричество #магнетизм #эксперименты #научные_фильмы

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥6529👍22🫡4🤯31😱1
Media is too big
VIEW IN TELEGRAM
⚙️ Помните этот пост на канале? Наверняка, у многих возникли вопросы, которые они постеснялись задать в комментариях. Поэтому сегодня мы поговорим о том, почему такие конструкции НЕ работают в реальной жизни. Разумеется, база рассуждений будет физика. Причем нам нам поможет элементарная физика. В последнее время в сети снова всплыли видео с «революционными» вечными двигателями. Устройство обычно такое: тяжелый маховик, а к его валу подключены несколько пружин, которые, якобы, своим распрямлением постоянно раскручивают систему. Выглядит захватывающе, но это обман. Давайте разберемся, почему это не работает. А пока задам вам вопрос: с чего мы взяли, что энергия, запасенная в сжатой пружине, бесконечна?

Вся магия вечных двигателей рушится на фундаментальном уравнении вращательного движения: J · ε = M , где
J — момент инерции маховика (его «нежелание» раскручиваться или инертность. Это аналог массы во втором законе Ньютона, из которого и выводится закон выше).
ε (эпсилон) — угловое ускорение (оно должно быть отлично от нуля, если двигатель раскручивается или оно может быть равным 0, если система вышла на постоянную скорость вращения).
M — суммарный момент сил, приложенных к системе.

Вот в чём подвох: в такой системе пружины создают силы, направленные в разные стороны. Когда одна пружина пытается раскрутить маховик по часовой стрелке, другая в этот же момент пытается крутить его против. Просто сделайте рисунок с торца такого двигателя. Получится, что алгебраическая сумма моментов всех сил (n сил для n пружин) равна нулю. Подставляем это в наше уравнение: J · ε = 0. Момент инерции J — величина не нулевая (маховик-то есть). Единственный способ выполнить это равенство — сделать угловое ускорение ε равным нулю. Вывод: система не может раскрутиться сама по себе.

Но в чем же подвох на видео? Всё довольно банально:
1. Скрытый источник энергии. Часто в кадр не попадает электромоторчик, спрятанный внутри вала или основания, который и раскручивает маховик.
2. Однократный запуск. Устройство раскручивают вручную, снимают фазу «последнего затухающего колебания», а потом видео зацикливают, создавая иллюзию непрерывного движения.
3. Хитрые ракурсы. Камера не показывает полный цикл работы всех пружин, чтобы зритель не увидел момент, когда они мешают, а не помогают движению.

Как бы вы не хотели изобрести вечный двигатель, вам стоит помнить, что закон сохранения (изменения) энергии работает всегда. Если есть диссипативные силы, то полная энергия системы убывает. И вы не сможете сделать вечный двигатель без пополнения энергией извне (но тогда это уже не вечный двигатель). #задачи #опыты #электродинамика #физика #видеоуроки #fun #physics #science #наука #двигатели #вечныйдвигатель

🔔 Оксфордский электрический звонок: самый долгий научный эксперимент в мире, длящийся с 1840 года

⚡️ Вечный электромагнитный двигатель

😨 Запрещенный генератор свободной энергии с использованием метода якоря

⚡️ Генератор Постоянного Движения

🔧 Картонный вентилятор

🧲 Магнитный двигатель

💦 Фонтан Герона

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4130🔥9🤯3😱2
⚡️ Электрический водяной мостик 💧

Если в стаканы поместить электроды и подать на них высокое напряжение, то деионизированная вода образует стабильный цилиндрический мост между двумя стаканами. Толщина мостика зависит от величины напряжения и, соответственно, проходящего тока.

Когда между двумя стаканами с водой создаётся разность потенциалов около 10 кВ, между стаканами может возникнуть тонкий водяной мостик. Силы поверхностного натяжения удерживают его на весу, а силы электрического давления не дают мостику распасться на отдельные капли. #gif #опыты #видеоуроки #физика #научные_фильмы #physics

💡 Physics.Math.Code // @physics_lib
👍58🔥171232
This media is not supported in your browser
VIEW IN TELEGRAM
🛩💨 Эффект Прандтля-Глоерта (паровой конус) — научно-популярное название конусовидного облака конденсата, возникающего вокруг объекта, движущегося на околозвуковых скоростях. Чаще всего наблюдается у самолётов. Назван в честь немецкого физика Людвига Прандтля и английского физика Германна Глоерта.

При достижении определённой скорости потока, обтекающего тело (крыло), соответствующей числу Маха, называемому критическим, местная скорость начинает превышать скорость звука. При этом возникает скачок уплотнения — нормальная ударная волна. Однако течения в пограничном слое в силу вязкости имеют существенно меньшую скорость. Возникает градиент скоростей, перпендикулярный поверхности, и как следствие, градиент давления. Этот градиент является неблагоприятным, приводящим к отрыву потока в основании ударной волны, и скачок уплотнения принимает лямбдовидную форму. Отрывное течение как бы оборачивается вокруг скачка, расширяется в зону за ударной волной. Этот процесс является местно адиабатическим, где занимаемый воздухом объём увеличивается, а его температура понижается. Если влажность воздуха достаточно велика, то температура воздуха может оказаться ниже точки росы. Тогда содержащийся в воздухе водяной пар конденсируется в виде мельчайших капелек, которые образуют небольшое облако. Поскольку отрывные течения за ударной волной направлены вдоль её фронта, передний край облака повторяет её форму, образуя конус.

Поскольку по мере удаления от фронта ударной волны температура снова становится равной температуре невозмущенного потока, конденсат испаряется. Поэтому складывается впечатление, что облако пара следует за летательным аппаратом.

При дальнейшем росте скорости фронт нормального скачка смещается по направлению потока, течения в пограничном слое становятся сверхзвуковыми и условия для конденсации исчезают. Поэтому паровой конус наблюдается лишь в узком диапазоне скоростей. #gif #физика #механика #видеоуроки #аэродинамика #термодинамика #МКТ #physics

💡 Physics.Math.Code // @physics_lib
👍9629🔥183🤔3🤯31🤩1
🧲 Удивительные свойства магнитного поля, визуализация поля с помощью металлических палочек или стружки

Магнит и железная стружка: Почему железные опилки, притянувшись к полюсу магнита, образуют кисти, отталкивающиеся друг от друга? Опилки намагничиваются, а затем располагаются по магнитным линиям магнитного поля, притягиваясь одним полюсом к магниту, а другим отталкиваясь друг от друга.

Неодимовый магнит — мощный постоянный магнит, состоящий из сплава редкоземельного элемента неодима, бора и железа. Кристаллическая структура имеет тетрагональную форму и представлена формулой Nd₂Fe₁₄B. Известен своей мощностью притяжения и высокой стойкостью к размагничиванию. Имеет металлический блеск, обусловленный покрытием (на изломе — серый), очень востребован и применяется в разных областях промышленности, медицины, в быту и электронике. #физика #physics #gif #видеоуроки #научные_фильмы #колебания #электричество #физика #опыты #магнетизм

💡 Physics.Math.Code // @physics_lib
🔥26👍18154🤔1
This media is not supported in your browser
VIEW IN TELEGRAM
💧 Эффект Лейденфроста — явление, при котором жидкость в контакте с твёрдой поверхностью, значительно более горячей, чем точка кипения этой жидкости, образует теплоизолирующую прослойку пара между поверхностью и жидкостью, замедляющую быстрое выкипание, например, капли жидкости на этой поверхности. Также это явление называют кризисом кипения. Посмотреть ещё видео по теме данного явления здесь.

При контакте жидкости с поверхностью, нагретой значительно выше температуры кипения жидкости, возникает устойчивый слой пара, который термодинамически изолирует жидкость от поверхности. Это приводит к парадоксальному уменьшению теплоотвода и увеличению времени испарения капли.

1. При температурах поверхности выше точки Лейденфроста (для воды ~ 190-220 °C при атмосферном давлении) контактная часть капли мгновенно испаряется.
2. Образовавшийся паровый слой имеет низкую теплопроводность по сравнению с жидкостью.
3. Давление пара поддерживает каплю в левитирующем состоянии, минимизируя площадь непосредственного контакта.
4. Теплообмен происходит в основном за счет теплопроводности через пар и излучения.

Для количественного описания эффекта ключевым параметром является толщина паровой прослойки δ, определяемая балансом сил давления пара, вязкого трения в паре и гидростатического давления. Активные исследования посвящены динамике капель в режиме Лейденфроста (самоорганизованное движение, эффект ракеты), влиянию структурированных и супергидрофобных поверхностей на точку Лейденфроста, а также управлению теплообменом через модификацию текстуры поверхности.

▪️ Этот эффект объясняет поведение капель воды на раскалённой сковороде.
▪️ Криогенная безопасность: явление позволяет кратковременно погружать руку в жидкий азот без мгновенного обморожения.
▪️ Применяется в промышленных процессах, где требуется контролируемое охлаждение (термообработка).
▪️Аналогичный эффект наблюдается для других пар фаз: твёрдое тело на перегретой поверхности расплава (эффект Кузнецова).
#физика #термодинамика #мкт #опыты #эксперименты #physics #видеоуроки #gif

💡 Physics.Math.Code // @physics_lib
👍48🔥1311🤩21
This media is not supported in your browser
VIEW IN TELEGRAM
💧 Батавские слёзки или капли принца Руперта (англ. Prince Rupert's drops) — застывшие капли закалённого стекла, обладающие чрезвычайно высокими внутренними механическими напряжениями. Скорее всего, подобные стеклянные капли были известны стеклодувам с незапамятных времён, однако внимание учёных они привлекли в середине XVII века.

Если капнуть расплавленным стеклом в холодную воду и стекло после этого не лопнет, а начнёт застывать, получается капля в форме головастика, с длинным изогнутым «хвостом». При этом «голова» капли обладает исключительной прочностью, по ней можно бить металлическим молотком в полную силу, и в зависимости от объёма она выдерживает усилие гидравлического пресса до 30 тонн, оставляя вмятину на стали.

Но стоит надломить или просто задеть «хвост» капли, и она мгновенно разлетается на мелкие осколки, по направлению от «хвоста» к «голове». По этой причине надламывание желательно проводить под слоем жидкости, и инструментом типа щипцов, так как при этом опыте помимо опасности от самого стекла происходит гидроудар из-за очень резкого расширения поля осколков. На кадрах, зарегистрированных с помощью высокоскоростной съёмки, видно, что фронт «взрыва» движется по капле с большой скоростью: 1,2 км/с (для сравнения: скорость звука в воздухе 0,34 км/с, скорость детонации взрывчатки — 2—9 км/с).

Если опыт проводится в темноте, заметна также триболюминесценция. В поляризованном свете видно, что капля не изотропна, а испытывает сильные внутренние напряжения, что и вызывает такие свойства.
#физика #сопромат #physics #mechanics #механика #опыты #кинематика #эксперименты #видеоуроки

💡 Physics.Math.Code // @physics_lib
1🔥124👍43348😱6🤩32🤯2
This media is not supported in your browser
VIEW IN TELEGRAM
🎈 Резиновый шарик в тепловизоре 🔥

Рассмотрим видео от нашего подписчика. Ранее на канале был уже такой опыт. Кратко о происходящем: Резиновый шарик растягивают ➜ Он нагревается (это видно в тепловизоре) ➜ Ждут пока температура выровняется ➜ Резко отпускают, шарик принимает обратно свою форму, но в тепловизоре заметно сильно охлаждение. Этот опыт демонстрирует обратный (или аномальный) термоупругий эффект Гоу-Джуля в резине. Это фундаментальное свойство каучуков и эластомеров, и внутренние напряжения здесь играют ключевую роль.

1. Растяжение шарика (Нагревание): Вы прикладываете силу, чтобы растянуть сетку полимерных цепей, из которых состоит резина. В нерастянутом состоянии длинные, хаотично свернутые полимерные молекулы находятся в состоянии с максимальной энтропией (максимальным беспорядком). При растяжении вы вынуждаете эти цепи выпрямляться и ориентироваться вдоль направления растяжения. Система становится более упорядоченной — её энтропия уменьшается. С термодинамической точки зрения, резиновая деформация — это в первую очередь энтропийный процесс. Внутренняя энергия цепи почти не меняется при растяжении. Согласно уравнению состояния идеального эластомера (аналог уравнения Клапейрона-Менделеева для газов): σ ~ T, где σ — напряжение, T — температура. При постоянной длине растяжения увеличение температуры повышает напряжение. Когда вы растягиваете шарик быстро (адиабатически), системе не хватает времени для теплообмена. Уменьшение энтропии (увеличение упорядоченности) при постоянной внутренней энергии должно сопровождаться выделением тепла, чтобы выполнялись законы термодинамики. Работа, совершаемая вами над резиной, переходит не в увеличение потенциальной энергии межмолекулярных связей (как в металле), а в уменьшение энтропии и, как следствие, в повышение температуры. Внутренние напряжения здесь — прямое следствие вынужденного снижения энтропии цепей.

2. Ожидание (Теплообмен): Растянутый шарик остывает до температуры окружающей среды, отдавая избыточное тепло. Теперь он находится в равновесном растянутом состоянии при комнатной температуре, но с высоким уровнем внутренних (энтропийных) напряжений. Цепи остаются в вытянутом, неестественном для них состоянии.

3. Резкое отпускание (Сильное охлаждение): Вы убираете внешнюю силу. Внутренние напряжения, запасенные в выпрямленных полимерных цепях, теперь выполняют работу. Цепи начинают стремительно сворачиваться обратно в хаотичные клубки, чтобы вернуться в состояние с максимальной энтропией (максимальным беспорядком). Этот процесс быстрого сворачивания (сжатия) является энтропийно-двигательной силой. Цепи совершают работу по сворачиванию, преодолевая внутреннее трение (вязкое сопротивление). Для совершения этой работы им нужна энергия. Поскольку процесс быстрый (адиабатический), эта энергия берется из их собственной тепловой (кинетической) энергии. В результате температура полимерной сетки резко падает. Это прямое следствие преобразования внутренней тепловой энергии в механическую работу, совершаемую против вязких сил при сворачивании.

А теперь пара вопросов по опыту:

1. Почему шарик сильнее охлаждается в той части, где есть переход в более широкий участок резины?

2. С железной пружиной будет точно такие же результаты? Если мы растянем пружину, потом подождем и дадим ей вернуться в исходное состояние, то она охладится?


#физика #механика #видеоуроки #science #термодинамика #МКТ #physics #опыты #эксперименты

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6422🔥15🤯4👨‍💻21❤‍🔥1😱1🤨1🆒1
This media is not supported in your browser
VIEW IN TELEGRAM
🕯Оптический опыт по физике 🔍

Оптика — одна из древнейших наук, чьи законы легли в основу современных технологий. Путь от первых наблюдений до точных формул занял тысячелетия.

▪️Античные начала (IV в. до н.э. — II в. н.э.)
— Эвклид сформулировал закон прямолинейного распространения света и закон отражения. Это была геометризация явлений, а не эксперимент.
— Птолемей провёл, возможно, первые количественные опыты по преломлению света, измерив углы падения и преломления на границе воздух-вода. Его данные были неточны, но метод — научен.

▪️Фундамент заложил Ибн аль-Хайсам (Альхазен) (X-XI вв.)
Его труд «Книга оптики» — поворотный пункт. Это не философия, а экспериментальная наука.
— Опыт с камерой-обскурой доказал, что свет исходит от предметов, а не из глаз (опровергнув теорию зрения Платона).
— Систематическое изучение линз, зеркал, преломления.
— Объяснение принципа зрения: свет отражается от объекта и попадает в глаз.
Его работы через несколько веков стали основой для европейских учёных.

▪️Практика: где линзы впервые стали обыденностью?
Теории предшествовала практика. Первое массовое применение линз началось в XIII веке в Северной Италии (Венеция, Флоренция).
— «Читательные камни» полусферы из горного хрусталя/берилла) использовались ранее, но именно в это время появились очки с выпуклыми линзами для коррекции дальнозоркости у пожилых. Это была революция в быту и ремеслах. Центром производства стала Венеция благодаря мастерству стеклодувов Мурано.
— Вогнутые линзы для близоруких появились лишь в XVI веке.

✍🏻 Важнейшие опыты Нового времени

1. Виллиброрд Снелл (Снеллиус) (1621): Точно установил математический закон преломления (хотя формула носит его имя, данные у того же Птолемея).
2. Исаак Ньютон (1666-1672): Ключевой эксперимент с призмой. Разложил белый свет на спектр и собрал его обратно, доказав, что цвет — свойство света, а не призмы. Заложил основы корпускулярной теории.
3. Кристиан Гюйгенс (1678): Сформулировал волновую теорию света, принцип Гюйгенса.

📝 Вопросы для наших подписчиков:

▪️ 1. Данная линза в опыте является собирающей или рассеивающей?
▪️ 2. Что мы увидим на экране, когда пламя свечи окажется на расстоянии d = F от линзы?
▪️ 3. Что мы увидим на том же экране, когда пламя свечи окажется на расстоянии d = F/2 от линзы?
#физика #оптика #опыты #видеоуроки #научные_фильмы #physics

💡 Physics.Math.Code // @physics_lib
31🔥16👍146😱2🤔1🤩1
Media is too big
VIEW IN TELEGRAM
📝 Квадратура круга [1972] Центрнаучфильм

Детская научно – познавательная картина о древней математической загадке, названной «квадратура круга», о дальнейшей истории этой математической задачи. Квадратура круга — задача, заключающаяся в нахождении способа построения с помощью циркуля и линейки (без шкалы с делениями) квадрата, равновеликого по площади данному кругу. Наряду с трисекцией угла и удвоением куба, является одной из самых известных неразрешимых задач на построение с помощью циркуля и линейки.

Квадратура круга — задача, заключающаяся в нахождении способа построения с помощью циркуля и линейки квадрата, равновеликого по площади данному кругу.

О свойствах параболы

Наш канал с научно-техническими фильмами: 🎥 Учебные фильмы 🎞 @maths_lib

#физика #математика #моделирование #опыты #эксперименты #physics #видеоуроки #научные_фильмы #math #geometry

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍61🔥2116😍3
This media is not supported in your browser
VIEW IN TELEGRAM
О физике северного сияния

Северное сияние (Aurora Borealis) — это видимое проявление фундаментальных процессов физики плазмы и электродинамики, происходящих на расстоянии в сотни километров над Землей.
Рассмотрим механизм этого явления:
1. Солнечный ветер — поток заряженных частиц (в основном электронов и протонов) — достигает магнитосферы Земли.
2. Частицы захватываются магнитным полем и направляются вдоль силовых линий к магнитным полюсам.
3. В верхних слоях атмосферы (ионосфере) эти высокоэнергетические частицы сталкиваются с атомами и молекулами кислорода и азота.
4. При столкновении происходит возбуждение атомов с последующим излучением квантов света в характерном диапазоне (зеленый, красный, фиолетовый).

Малоизвестные факты физики и электродинамики процесса:

▪️Роль альфвеновских волн. Непосредственную «доставку» электронов в атмосферу обеспечивают не статические поля, а альфвеновские волны — низкочастотные колебания плазмы и магнитного поля. Они разгоняют электроны вдоль силовых линий, подобно гигантскому электромагнитному «катапульту».
▪️Электрические токи гигантских масштабов. Свечению сопутствует система кольцевых токов в магнитосфере и электроджетов в ионосфере. Сила этих токов может достигать миллионов ампер, а их возмущения (магнитные бури) способны влиять на энергосистемы на Земле.
▪️Дифференциальное свечение по высоте. Разный цвет — не просто разный газ. Это точный индикатор энергии частиц и плотности атмосферы:
— Ярко-зеленый (557,7 нм): атомарный кислород на высоте ~100-150 км. Характерная черта основных дуг.
— Красный (630 нм): тот же атомарный кислород, но на высотах 200-400 км, где столкновения редки. Это признак спокойных, диффузных сияний.
— Фиолетовый/синий: ионизированные молекулы азота на высотах ~80-100 км. Их свечение говорит о самых энергичных частицах, проникающих глубже.
▪️Инверсионный слой космического масштаба. Область генерации сияния работает как природный лазер на разреженных газах (без зеркального резонатора). Процесс называется индуцированным излучением — возбужденные столкновением атомы излучают когерентно под воздействием пролетающих электронов.

😠 Может ли быть южное сияние? Не только может, но и регулярно существует. Его правильное название — Aurora Australis (Южная Аврора). Оно возникает вокруг южного магнитного полюса по тем же физическим законам. Наблюдать его сложнее из-за малозаселенности приполярных районов Южного полушария (Антарктида, юг Индийского и Тихого океанов). Во время мощных геомагнитных бурь его можно видеть на юге Новой Зеландии, Австралии и даже в Аргентине.

Итак, сияние — это гигантский природный ускоритель частиц, плазменный дисплей, работающий в разреженной атмосфере, и наглядная демонстрация связи Земли с Солнцем. Его изучение — ключ к пониманию космической погоды и физики плазмы.
#электродинамика #physics #оптика #наука #физика #магнетизм #science #опыты #видеоуроки #астрофизика #геомагнетизм

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥5731👍184💯4🤩2😍2🫡2🙈1
This media is not supported in your browser
VIEW IN TELEGRAM
🧲 Магнитная левитация волчка в потенциальной яме индукции внешнего магнитного поля 💤

Над платформой с магнитами (постоянными или катушками с током) раскручивают волчок, а затем убирают подставку — и он продолжает парить и крутиться в воздухе. Какая физика в основе?

▪️ 1. Магнитная левитация: В основании волчка и на подставке установлены сильные неодимовые магниты, обращенные друг к другу одноименными полюсами (север к северу или юг к югу). Они отталкиваются, создавая силу, направленную против гравитации. Этой силы как раз хватает, чтобы удерживать вес волчка в воздухе.

▪️ 2. Гироскопический эффект (стабилизация): Одного отталкивания мало. Если бы волчок не вращался, он бы просто перевернулся, так как положение «вверх тормашками» на отталкивающих магнитах неустойчиво. Но раскрученный волчок — это гироскоп. Гироскоп стремится сохранить ориентацию своей оси вращения в пространстве. Эта гироскопическая стабильность не дает волчку опрокинуться и заставляет его прецессировать вокруг магнитной оси, оставаясь в устойчивом парении.

📐 Особенности конструкции:
1. Сильные магниты: Обычно это неодимовые (NdFeB) магниты. От их силы зависит высота левитации.
2. Диамагнитный стабилизатор (секретный ингредиент): В самых стабильных конструкциях снизу часто устанавливают пластину из диамагнетика (например, пиролитического графита или меди). Диамагнетики слабо отталкиваются от любого магнитного поля. Эта пластина создает дополнительную «восстанавливающую силу», которая не дает волчку улететь в сторону и делает левитацию невероятно стабильной. Без нее волчок было бы очень сложно удержать в центре.
3. Идеальный вес и балансировка: Волчок должен быть идеально сбалансированным. Его вес должен в точности компенсироваться магнитной подъемной силой на определенной высоте.

👨‍🔬 Кто первый? Хотя подобные эффекты изучались и раньше, популяризатором именно этой элегантной демонстрации с волчком считается американский физик Рой Харриготен (Roy Harrigan), который запатентовал подобное устройство в начале 1980-х. Позже, в 2000-х, профессор Ларри Спир (Larry Spring) и знаменитый популяризатор науки Профессор Магги (Prof. Maggy) из Англии доработали и показали миру этот опыт в своих лекциях, сделав его вирусным. Парящий волчок — это не иллюзия, а физическая система, где магнитное отталкивание борется с гравитацией, а гироскопический эффект обеспечивает устойчивость. #видеоуроки #physics #физика #опыты #электродинамика #электричество #магнетизм #эксперименты #научные_фильмы

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6523🔥233❤‍🔥2
This media is not supported in your browser
VIEW IN TELEGRAM
☺️ Труба Кундта — это экспериментальный акустический прибор, изобретённый в 1866 немецким физиком Августом Кундтом для измерения скорости звука в газах или твердом цилиндре. На сегодняшний день прибор используется для демонстрации акустической стоячей волны.

🔴Труба состоит из прозрачного цилиндра, заполненного небольшим количеством мелкого лёгкого порошка (из пробки, ликоподия, талька, частичек пенопласта). На одном конце трубы установлен источник звука стабильной частоты. Кундт использовал металлический резонатор, который "пел" при его натирании. Современные демонстрации используют в качестве источника звука динамики, подключённые к генератору сигналов, дающим синусоидальный сигнал стабильной частоты. Другой конец трубы заглушен или содержит перемещаемый поршень для настройки длины трубы. Когда источник звука включён, длину трубы изменяют поршнем с противоположного конца, пока звук не станет резко громким — это показывает наличие в трубе акустического резонанса. Это означает, что на пути звука умещается кратное число длин волн звука, длина волны обозначается буквой λ. В то же время длина трубы кратна целому числу полуволн. В трубе образуется стоячая волна. Амплитуда вибраций, вследствие сложения волн, равна нулю через периодические расстояния вдоль трубы, образуя "узлы", в которых порошок не шевелится, и пучности, в которых амплитуда максимальна и порошок шевелится. Порошок захватывается движениями воздуха, созданными акустической волной в трубе, и формирует горки в местах узлов, которые остаются и после выключения звука. Расстояние между горками равно половине длины волны звука λ/2. Если измерить расстояние между горками - можно найти длину волны звука λ, и если частота звука, обозначаемая буквой f известна, то можно найти скорость звука в воздухе. Взаимосвязь описывается формулой: c = λ•f. Перемещение частиц порошка вызывается акустическим потоком, вызванным пограничным слоем у стенок трубы.

Заполняя трубу различными газами, а также откачивая газ из трубы насосом Кундт смог измерить скорость звука в различных газах и при различных давлениях. Источником колебаний служил металлический стержень, закрепленный в центре пробки с одного из концов трубы. Когда Кундт тёр стержень куском кожи, покрытом канифолью, стержень резонировал на своей резонансной частоте. Так как скорость звука в воздухе уже была известна, Кундт смог рассчитать скорость звука в металле стержня. Длина стержня L была равна длине полуволны звука в металле, а расстояние между горками порошка в трубе равно половине длины волны звука в воздухе d. Соответственно скорости звука в этих средах относились между собой как длины волн. #физика #наука #science #physics #акустика #волны #опыты #эксперименты #видеоуроки

Акустическая левитация

〰️ Воздействие звуковой волны 24 Гц на струю воды 🔉

Кнут способен преодолеть звуковой барьер

〰️ Воздействие звуковых волн различных частот на соль 🔉

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥62👍2924👾5😍41😱1🌚1
This media is not supported in your browser
VIEW IN TELEGRAM
Отображения функции в окружности [ Mapping Functions to a Circle ]

«Деление = 150» означает, что на окружности круга имеется 150 равномерно расположенных точек. Окружность здесь на самом деле представляет собой просто числовую линию, заключенную в круг с использованием функции деления по модулю (x mod 150). Выбирается точка «x» , умножается на некоторый коэффициент, получается новая точка «y». Координаты этих точек соединяются в линию. Огибающая этих отрезков создает красивые узоры. Это связано с эпициклоидами и отражениями света внутри кружки.

Две формы, которые вы, скорее всего, увидите в своей кружке, — это кардиоида (y = x * 2,000) («Кардио» означает «сердце», а «-oid» означает «подобный», поэтому «кардиоида» означает «похожий на сердце») (Кардиоид выглядит как сердце) и нефроид (y = x * 3,000) («Нефро» означает «почка», поэтому «Нефроид» означает «похожий на почку») (Нефроид выглядит как почка). #математика #опыты #геометрия #gif #анимация #видеоуроки #math #geometry

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
66🔥45👍23🤩6🤯4😱2