This media is not supported in your browser
VIEW IN TELEGRAM
Вчера был пост про
▪️ Принцип прост: При охлаждении до -196°C большинство металлов ощутимо сжимаются (коэффициент термического расширения работает в обе стороны).
▪️ Процесс: Деталь погружают в жидкий азот. Она «усыхает» на несколько сотых миллиметра — и этого достаточно.
▪️ Монтаж: Быстро, пока деталь холодная, её практически вручную устанавливают в отверстие.
▪️ Финал: Деталь прогревается до температуры окружающей среды и расширяется, создавая неразъемное, сверхпрочное соединение.
Основные плюсы такого метода: не повреждает покрытие, идеальная точность, иногда это единственно возможные способ. Некоторые механизмы могут быть собраны только с помощью экстремального холода.
#термодинамика #мкт #химия #физика #наука #микромир #опыты #physics #эксперименты #science #азот
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍113❤🔥38🔥28❤10🤩3🤝2💯1🆒1
📗 Начала физики [2007] Павленко Ю.Г.
💾 Скачать книгу
Кому подойдет эта книга:
▪️Учащимся физико-математических лицеев и гимназий.
▪️Абитуриентам, готовящимся к поступлению в ведущие технические и естественнонаучные вузы (МФТИ, МГУ, НГУ и др.).
▪️Студентам младших курсов для закрепления и углубления школьной программы.
▪️Преподавателям физики в качестве источника сложных и интересных задач.
Кому не подойдет:
▫️Новичкам, только начинающим изучать физику.
▫️Учащимся, которым нужен упрощенный или «разжеванный» подход.
▫️Тем, кто готовится к стандартному школьному ЕГЭ без цели углубления (хотя для части «С» она очень полезна).
☕️ Кто захочет задонать на кофе: ВТБ:
📚Книжная серия. Курс общей физики [2007-2020] Иродов, Покровский
📚 Сборник задач по общему курсу физики [3 книги] [1998-2000]
📚 Курс общей физики в 5 томах [2021] Савельев И.В.
📚 Наука. Величайшие теории [50 выпусков] + Спец. выпуск
📚 Курс теоретической физики [2 тома] [1972] А. С. Компанеец
#физика #математика #задачи #геометрия #physics #math #science #наука #подборка_книг
💡 Physics.Math.Code // @physics_lib
💾 Скачать книгу
Кому подойдет эта книга:
▪️Учащимся физико-математических лицеев и гимназий.
▪️Абитуриентам, готовящимся к поступлению в ведущие технические и естественнонаучные вузы (МФТИ, МГУ, НГУ и др.).
▪️Студентам младших курсов для закрепления и углубления школьной программы.
▪️Преподавателям физики в качестве источника сложных и интересных задач.
Кому не подойдет:
▫️Новичкам, только начинающим изучать физику.
▫️Учащимся, которым нужен упрощенный или «разжеванный» подход.
▫️Тем, кто готовится к стандартному школьному ЕГЭ без цели углубления (хотя для части «С» она очень полезна).
☕️ Кто захочет задонать на кофе: ВТБ:
+79616572047 (СБП) 📚Книжная серия. Курс общей физики [2007-2020] Иродов, Покровский
📚 Сборник задач по общему курсу физики [3 книги] [1998-2000]
📚 Курс общей физики в 5 томах [2021] Савельев И.В.
📚 Наука. Величайшие теории [50 выпусков] + Спец. выпуск
📚 Курс теоретической физики [2 тома] [1972] А. С. Компанеец
#физика #математика #задачи #геометрия #physics #math #science #наука #подборка_книг
💡 Physics.Math.Code // @physics_lib
🔥37❤19👍12😍3⚡2🤩1
Начала физики [2007] Павленко Ю.Г..pdf
12.5 MB
📗 Начала физики [2007] Павленко Ю.Г.
Фундаментальный, строгий и требовательный учебник, ставший классикой для углубленного изучения физики в старших классах и на младших курсах вузов. Это не книга для легкого чтения или знакомства с предметом «с нуля». Это интеллектуальный тренажер для тех, кто хочет понять физику на глубоком, системном уровне. Книга построена традиционно для фундаментальных курсов: механика, молекулярная физика и термодинамика, электродинамика, оптика, квантовая и ядерная физика. Однако ее главная особенность — не в перечне тем, а в глубине и строгости их изложения.
1. Теоретическая часть: Изложение лаконичное, концентрированное. Автор не тратит слов на лирические отступления. Каждое понятие, каждый закон вводятся четко и последовательно. Особый акцент делается на физический смысл явлений и их математическое описание. Это не сборник формул, а система, где показывается логическая связь между разделами.
2. Задачи: Это «золотой фонд» книги. Задачи расположены по нарастающей сложности — от стандартных учебных до олимпиадных и задач вступительных экзаменов в престижные вузы. Их отличительная черта — они требуют не простой подстановки в формулу, а глубокого анализа, построения физической модели и нетривиального математического решения. Многие задачи являются маленькими исследованиями.
🔸 Достоинства:
➕Фундаментальность: Дает прочную, систематизированную базу знаний. После изучения этой книги у студента формируется целостная картина физики как науки.
➕Развитие мышления: Книга учит не запоминать, а думать, анализировать условие, видеть скрытые связи и применять общие законы к конкретным ситуациям.
➕Качество задач: Подборка задач беспрецедентна по своей ценности для подготовки к серьезным испытаниям. Решение этих задач — это лучшая тренировка ума для будущего физика или инженера.
➕Математическая строгость: Внимание уделяется не только физической, но и математической стороне вопросов, что крайне важно для правильного понимания.
🔹 Недостатки (особенности):
➖Высокий порог входа: Книга требует серьезной математической подготовки (уверенное владение алгеброй, тригонометрией, основами математического анализа) и базового понимания физических процессов. Без этого она покажется непонятной и отталкивающей.
➖Лаконичность и сухость изложения: Автор не разжевывает материал. Некоторые моменты могут потребовать дополнительных объяснений от преподавателя или изучения других, более популярных учебников.
➖Не для всех форматов экзаменов: Для стандартного ЕГЭ материал избыточен и излишне сложен. Ее ценность раскрывается именно при целенаправленной углубленной подготовке.
По сложности и подходу «Начала физики» Павленко часто ставят в один ряд с такими классическими книгами, как «Общий курс физики» И.В. Савельева (для вузов) или задачниками Рымкевича и Волькенштейна. Однако Павленко уникален своим балансом между сжатым, но полным теоретическим курсом и блестящим подбором задач, что делает его идеальным именно для переходного этапа «школа — вуз».
«Начала физики» Ю.Г. Павленко — это книга-легенда. Это не просто учебник, а испытание для будущего ученого или инженера. Если вы готовы к серьезной работе, хотите не просто сдать экзамен, а по-настоящему понять логику и красоту физики, то эта книга станет вашим незаменимым спутником и проводником в мир высокой науки. Она требует усилий, но щедро вознаграждает за них ясным умом и глубокими знаниями. #физика #математика #задачи #геометрия #physics #math #science #наука #подборка_книг
💡 Physics.Math.Code // @physics_lib
Фундаментальный, строгий и требовательный учебник, ставший классикой для углубленного изучения физики в старших классах и на младших курсах вузов. Это не книга для легкого чтения или знакомства с предметом «с нуля». Это интеллектуальный тренажер для тех, кто хочет понять физику на глубоком, системном уровне. Книга построена традиционно для фундаментальных курсов: механика, молекулярная физика и термодинамика, электродинамика, оптика, квантовая и ядерная физика. Однако ее главная особенность — не в перечне тем, а в глубине и строгости их изложения.
1. Теоретическая часть: Изложение лаконичное, концентрированное. Автор не тратит слов на лирические отступления. Каждое понятие, каждый закон вводятся четко и последовательно. Особый акцент делается на физический смысл явлений и их математическое описание. Это не сборник формул, а система, где показывается логическая связь между разделами.
2. Задачи: Это «золотой фонд» книги. Задачи расположены по нарастающей сложности — от стандартных учебных до олимпиадных и задач вступительных экзаменов в престижные вузы. Их отличительная черта — они требуют не простой подстановки в формулу, а глубокого анализа, построения физической модели и нетривиального математического решения. Многие задачи являются маленькими исследованиями.
🔸 Достоинства:
➕Фундаментальность: Дает прочную, систематизированную базу знаний. После изучения этой книги у студента формируется целостная картина физики как науки.
➕Развитие мышления: Книга учит не запоминать, а думать, анализировать условие, видеть скрытые связи и применять общие законы к конкретным ситуациям.
➕Качество задач: Подборка задач беспрецедентна по своей ценности для подготовки к серьезным испытаниям. Решение этих задач — это лучшая тренировка ума для будущего физика или инженера.
➕Математическая строгость: Внимание уделяется не только физической, но и математической стороне вопросов, что крайне важно для правильного понимания.
🔹 Недостатки (особенности):
➖Высокий порог входа: Книга требует серьезной математической подготовки (уверенное владение алгеброй, тригонометрией, основами математического анализа) и базового понимания физических процессов. Без этого она покажется непонятной и отталкивающей.
➖Лаконичность и сухость изложения: Автор не разжевывает материал. Некоторые моменты могут потребовать дополнительных объяснений от преподавателя или изучения других, более популярных учебников.
➖Не для всех форматов экзаменов: Для стандартного ЕГЭ материал избыточен и излишне сложен. Ее ценность раскрывается именно при целенаправленной углубленной подготовке.
По сложности и подходу «Начала физики» Павленко часто ставят в один ряд с такими классическими книгами, как «Общий курс физики» И.В. Савельева (для вузов) или задачниками Рымкевича и Волькенштейна. Однако Павленко уникален своим балансом между сжатым, но полным теоретическим курсом и блестящим подбором задач, что делает его идеальным именно для переходного этапа «школа — вуз».
«Начала физики» Ю.Г. Павленко — это книга-легенда. Это не просто учебник, а испытание для будущего ученого или инженера. Если вы готовы к серьезной работе, хотите не просто сдать экзамен, а по-настоящему понять логику и красоту физики, то эта книга станет вашим незаменимым спутником и проводником в мир высокой науки. Она требует усилий, но щедро вознаграждает за них ясным умом и глубокими знаниями. #физика #математика #задачи #геометрия #physics #math #science #наука #подборка_книг
💡 Physics.Math.Code // @physics_lib
❤79👍35🔥12😍7🥰2🤩2
Реальный физический принцип: Вращение обусловлено тепловым скольжением газа (термофорез). Процесс выглядит так:
1. Черная сторона лопасти поглощает излучение и сильнее нагревается.
2. Прилегающие к ней молекулы газа получают большую кинетическую энергию.
3. Возникает разница давлений у края лопасти: со стороны нагретой поверхности молекулы «отталкиваются» сильнее, создавая результирующую силу, направленную от горячей зоны к холодной.
4. Эта сила, действующая по краям лопастей, и создает наблюдаемый вращательный момент.
Малоизвестные факты:
▪️Критическое давление. Радиометр работает только в условиях частичного разрежения. При атмосферном давлении столкновения молекул слишком часты, эффект выравнивается. В глубоком вакууме газа для отталкивания просто нет. Оптимальный режим — примерно 0.01–1 Па.
▪️Направление вращения. При определенном, очень низком давлении можно наблюдать, как радиометр вращается в обратную сторону (белые стороны вперед). Это происходит, когда длина свободного пробега молекул становится сравнима с размерами прибора. Молекулы, покидающие более горячую черную поверхность (где их средняя скорость выше), создают бóльшую реактивную силу, чем молекулы, ударяющие в нее.
▪️Не только свет. Прибор реагирует на любой источник тепла. Нагретая лопасть заставит вертушку вращаться даже в полной темноте, что доказывает тепловую, а не чисто световую природу явления.
▪️Исторический спор. Первоначально Уильям Крукс и сам считал, что наблюдает прямое световое давление. Спор о природе вращения между ним и Джеймсом Максвеллом был разрешен лишь через несколько лет другими физиками, углубив понимание кинетической теории газов.
Радиометр Крукса визуализирует сложное взаимодействие между теплом, поверхностью и разреженным газом. #физика #термодинамика #оптика #мкт #physics #радиометр_крукса #science #наука #история_науки
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍76❤25🔥16⚡5😍4
Media is too big
VIEW IN TELEGRAM
➰ Гармонограф (Harmonograph) — это механическое устройство, которое использует маятники для создания геометрического изображения. Создаваемые чертежи обычно представляют собой кривые Лиссажу или связанные с ними чертежи большей сложности. Устройства, которые начали появляться в середине 19 века и достигли пика популярности в 1890-х годах, нельзя однозначно отнести к одному человеку, хотя Хью Блэкберн, профессор математики в Университете Глазго, обычно считается официальным изобретателем.
Простой, так называемый "боковой" гармонограф использует два маятника для управления движением пера относительно поверхности для рисования. Один маятник перемещает перо взад и вперед вдоль одной оси, а другой маятник перемещает поверхность для рисования взад и вперед вдоль перпендикулярной оси. Изменяя частоту и фазу маятников относительно друг друга, создаются различные узоры. Даже простой гармонограф, как описано, может создавать эллипсы, спирали, восьмерки и другие фигуры Лиссажу.
Более сложные гармонографы включают в себя три или более маятников или соединенных маятников вместе (например, подвешивание одного маятника к другому), или включают вращательное движение, при котором один или несколько маятников установлены на подвесках для обеспечения движения в любом направлении. #gif #physics #физика #механика #колебания
💡 Physics.Math.Code // @physics_lib
Простой, так называемый "боковой" гармонограф использует два маятника для управления движением пера относительно поверхности для рисования. Один маятник перемещает перо взад и вперед вдоль одной оси, а другой маятник перемещает поверхность для рисования взад и вперед вдоль перпендикулярной оси. Изменяя частоту и фазу маятников относительно друг друга, создаются различные узоры. Даже простой гармонограф, как описано, может создавать эллипсы, спирали, восьмерки и другие фигуры Лиссажу.
Более сложные гармонографы включают в себя три или более маятников или соединенных маятников вместе (например, подвешивание одного маятника к другому), или включают вращательное движение, при котором один или несколько маятников установлены на подвесках для обеспечения движения в любом направлении. #gif #physics #физика #механика #колебания
💡 Physics.Math.Code // @physics_lib
❤29👍25🔥10🤩3🤔2
📗 Физика в графиках [1964] Цедрик М.С., Бирич У.В., Макеева Г.П.
💾 Скачать книгу
Содержательные и методические достоинства:
1. Систематизация материала. Книга структурирована в строгом соответствии с классическим университетским курсом физики: механика, молекулярная физика и термодинамика, электричество и магнетизм, оптика. Такой подход позволяет использовать пособие в качестве справочного дополнения к основным учебникам.
2. Акцент на функциональных зависимостях. Главное достоинство издания – концентрация на графическом представлении физических законов. Это прививает учащимся навык «чтения» графиков, умения извлекать из них количественную информацию и понимать характер функциональной связи между величинами (линейная, квадратичная, экспоненциальная, логарифмическая и т.д.).
3. Лаконичность и наглядность. Каждый график сопровождается кратким, но исчерпывающим комментарием, разъясняющим физическую суть зависимости, условия её выполнения и границы применимости. Это делает пособие удобным для повторения и закрепления материала.
4. Связь теории и эксперимента. Многие представленные графики являются идеализированными моделями реальных экспериментальных данных, что способствует формированию корректного понимания взаимосвязи абстрактной теории и практического исследования.
Критические замечания и ограничения, обусловленные временем издания:
1. Устаревший физический контекст. За прошедшие десятилетия физическая наука ушла далеко вперёд. В пособии отсутствуют графики, иллюстрирующие ключевые зависимости в областях квантовой механики, физики твёрдого тела, ядерной физики и астрофизики в том объёме, который считается необходимым для современного курса.
2. Техническое исполнение графиков. Качество полиграфии и самих иллюстраций соответствует своему времени и на текущий момент выглядит архаичным. Отсутствие цвета и низкое по современным меркам графическое разрешение могут снижать восприятие для поколения, привыкшего к цифровой визуализации.
3. Методологический консерватизм. Подход авторов является строго классическим. Не затрагиваются вопросы компьютерного моделирования и обработки данных, которые стали неотъемлемой частью современного физического образования.
📚 Книги по физике — автор Джей Орир
#физика #physics #подборка_книг #наука #science
💡 Physics.Math.Code // @physics_lib
💾 Скачать книгу
Содержательные и методические достоинства:
1. Систематизация материала. Книга структурирована в строгом соответствии с классическим университетским курсом физики: механика, молекулярная физика и термодинамика, электричество и магнетизм, оптика. Такой подход позволяет использовать пособие в качестве справочного дополнения к основным учебникам.
2. Акцент на функциональных зависимостях. Главное достоинство издания – концентрация на графическом представлении физических законов. Это прививает учащимся навык «чтения» графиков, умения извлекать из них количественную информацию и понимать характер функциональной связи между величинами (линейная, квадратичная, экспоненциальная, логарифмическая и т.д.).
3. Лаконичность и наглядность. Каждый график сопровождается кратким, но исчерпывающим комментарием, разъясняющим физическую суть зависимости, условия её выполнения и границы применимости. Это делает пособие удобным для повторения и закрепления материала.
4. Связь теории и эксперимента. Многие представленные графики являются идеализированными моделями реальных экспериментальных данных, что способствует формированию корректного понимания взаимосвязи абстрактной теории и практического исследования.
Критические замечания и ограничения, обусловленные временем издания:
1. Устаревший физический контекст. За прошедшие десятилетия физическая наука ушла далеко вперёд. В пособии отсутствуют графики, иллюстрирующие ключевые зависимости в областях квантовой механики, физики твёрдого тела, ядерной физики и астрофизики в том объёме, который считается необходимым для современного курса.
2. Техническое исполнение графиков. Качество полиграфии и самих иллюстраций соответствует своему времени и на текущий момент выглядит архаичным. Отсутствие цвета и низкое по современным меркам графическое разрешение могут снижать восприятие для поколения, привыкшего к цифровой визуализации.
3. Методологический консерватизм. Подход авторов является строго классическим. Не затрагиваются вопросы компьютерного моделирования и обработки данных, которые стали неотъемлемой частью современного физического образования.
📚 Книги по физике — автор Джей Орир
#физика #physics #подборка_книг #наука #science
💡 Physics.Math.Code // @physics_lib
1❤38👍26🔥11🥰3😱2🤩2🤯1
Физика_в_графиках_1964_Цедрик_М_С_,_Бирич_У_В_,_Макеева_Г_П_.pdf
7.3 MB
📗 Физика в графиках [1964] Цедрик М.С., Бирич У.В., Макеева Г.П.
Данное пособие, вышедшее в свет в 1964 году, занимает определённую нишу в методическом обеспечении курсов общей и экспериментальной физики для высших учебных заведений. Его основная концептуальная задача – систематизация и визуализация фундаментальных физических закономерностей через графические зависимости – сохраняет свою дидактическую ценность и по сей день.
Учебное пособие Цедрик М.С., Бирич У.В., Макеевой Г.П. «Физика в графиках» представляет собой добротный, методически выверенный труд, не утративший своей ценности в качестве вспомогательного ресурса. Его эффективность наиболее высока при формировании у студентов базовых навыков графического анализа в рамках классической физики.
В настоящее время книга может быть рекомендована не в качестве основного учебника, а как дополнительное пособие для систематизации знаний и развития культуры работы с графической информацией. Для полноценного образования требуется её обязательное дополнение современными учебниками и ресурсами, охватывающими актуальные разделы физики и современные методы исследования. #физика #physics #подборка_книг #наука #science
💡 Physics.Math.Code // @physics_lib
Данное пособие, вышедшее в свет в 1964 году, занимает определённую нишу в методическом обеспечении курсов общей и экспериментальной физики для высших учебных заведений. Его основная концептуальная задача – систематизация и визуализация фундаментальных физических закономерностей через графические зависимости – сохраняет свою дидактическую ценность и по сей день.
Учебное пособие Цедрик М.С., Бирич У.В., Макеевой Г.П. «Физика в графиках» представляет собой добротный, методически выверенный труд, не утративший своей ценности в качестве вспомогательного ресурса. Его эффективность наиболее высока при формировании у студентов базовых навыков графического анализа в рамках классической физики.
В настоящее время книга может быть рекомендована не в качестве основного учебника, а как дополнительное пособие для систематизации знаний и развития культуры работы с графической информацией. Для полноценного образования требуется её обязательное дополнение современными учебниками и ресурсами, охватывающими актуальные разделы физики и современные методы исследования. #физика #physics #подборка_книг #наука #science
💡 Physics.Math.Code // @physics_lib
1❤41👍40🔥13🤩2🤗2🙈1
📕 Физика. Решение задач повышенной сложности: по материалам городских олимпиад школьников [2004] Манида
💾 Скачать книгу
➕ Содержательные и методические достоинства:
Аутентичность материала. Основное достоинство издания – использование реальных заданий, предлагавшихся на городских олимпиадах школьников по физике. Это обеспечивает высокую репрезентативность материала и его непосредственную практическую ценность для подготовки.
Системный подход к решению. Автор не ограничивается простым представлением условий и ответов. Пособие сфокусировано на демонстрации методологии: построению логических цепочек, выбору оптимального способа решения, применению нетривиальных физических и математических моделей. Акцент делается на глубоком анализе условия и поиске ключевой идеи.
Классификация и тематическая структура. Задачи, как правило, сгруппированы по разделам классической физики (механика, молекулярная физика, электродинамика, оптика), что позволяет вести тематическую подготовку. Внутри разделов часто прослеживается прогрессия от относительно простых к более комплексным проблемам.
Развитие физического мышления. Пособие ориентировано на формирование у учащегося способности выходить за рамки шаблонных подходов, визуализировать физические процессы и применять фундаментальные законы в новых, непривычных контекстах.
➖ Критические замечания и ограничения:
1. Уровень сложности. Пособие адресовано узкому кругу учащихся – победителям и призёрам региональных этапов, целеустремлённым участникам, готовящимся к выходу на всероссийский уровень. Для среднестатистического школьника или студента младших курсов материал может оказаться чрезмерно сложным и демотивирующим.
2. Дидактическая лаконичность. В фокусе внимания – решение конкретной задачи. Теоретические справки и разбор общих методов (таких, как метод размерностей, принцип симметрии, закон сохранения энергии в обобщённых координатах) могут быть представлены недостаточно полно, предполагая, что пользователь уже владеет базовой техникой.
3. Вопросы оформления и доступности. Будучи изданием 2004 года, книга может быть малодоступна в печатном виде. Качество полиграфии и вёрстки у подобных локальных изданий иногда уступает стандартам крупных издательств, что может затруднять восприятие.
☕️ Кто захочет задонать на кофе: ВТБ:
📗 Физика в графиках [1964] Цедрик М.С., Бирич У.В., Макеева Г.П.
📗 Начала физики [2007] Павленко Ю.Г.
📚 Книжная серия. Курс общей физики [2007-2020] Иродов, Покровский
📚 Сборник задач по общему курсу физики [3 книги] [1998-2000]
📚 Курс общей физики в 5 томах [2021] Савельев И.В.
📚 Наука. Величайшие теории [50 выпусков] + Спец. выпуск
📚 Курс теоретической физики [2 тома] [1972] А. С. Компанеец
#физика #physics #подборка_книг #наука #science
💡 Physics.Math.Code // @physics_lib
💾 Скачать книгу
➕ Содержательные и методические достоинства:
Аутентичность материала. Основное достоинство издания – использование реальных заданий, предлагавшихся на городских олимпиадах школьников по физике. Это обеспечивает высокую репрезентативность материала и его непосредственную практическую ценность для подготовки.
Системный подход к решению. Автор не ограничивается простым представлением условий и ответов. Пособие сфокусировано на демонстрации методологии: построению логических цепочек, выбору оптимального способа решения, применению нетривиальных физических и математических моделей. Акцент делается на глубоком анализе условия и поиске ключевой идеи.
Классификация и тематическая структура. Задачи, как правило, сгруппированы по разделам классической физики (механика, молекулярная физика, электродинамика, оптика), что позволяет вести тематическую подготовку. Внутри разделов часто прослеживается прогрессия от относительно простых к более комплексным проблемам.
Развитие физического мышления. Пособие ориентировано на формирование у учащегося способности выходить за рамки шаблонных подходов, визуализировать физические процессы и применять фундаментальные законы в новых, непривычных контекстах.
➖ Критические замечания и ограничения:
1. Уровень сложности. Пособие адресовано узкому кругу учащихся – победителям и призёрам региональных этапов, целеустремлённым участникам, готовящимся к выходу на всероссийский уровень. Для среднестатистического школьника или студента младших курсов материал может оказаться чрезмерно сложным и демотивирующим.
2. Дидактическая лаконичность. В фокусе внимания – решение конкретной задачи. Теоретические справки и разбор общих методов (таких, как метод размерностей, принцип симметрии, закон сохранения энергии в обобщённых координатах) могут быть представлены недостаточно полно, предполагая, что пользователь уже владеет базовой техникой.
3. Вопросы оформления и доступности. Будучи изданием 2004 года, книга может быть малодоступна в печатном виде. Качество полиграфии и вёрстки у подобных локальных изданий иногда уступает стандартам крупных издательств, что может затруднять восприятие.
☕️ Кто захочет задонать на кофе: ВТБ:
+79616572047 (СБП) 📗 Физика в графиках [1964] Цедрик М.С., Бирич У.В., Макеева Г.П.
📗 Начала физики [2007] Павленко Ю.Г.
📚 Книжная серия. Курс общей физики [2007-2020] Иродов, Покровский
📚 Сборник задач по общему курсу физики [3 книги] [1998-2000]
📚 Курс общей физики в 5 томах [2021] Савельев И.В.
📚 Наука. Величайшие теории [50 выпусков] + Спец. выпуск
📚 Курс теоретической физики [2 тома] [1972] А. С. Компанеец
#физика #physics #подборка_книг #наука #science
💡 Physics.Math.Code // @physics_lib
❤34👍18🔥6✍4❤🔥3🤯1🤩1
Физика_Решение_задач_повышенной_сложности_по_материалам_городских.djvu
6.3 MB
📕 Физика. Решение задач повышенной сложности: по материалам городских олимпиад школьников [2004] Манида
Данное пособие предназначено для целенаправленной подготовки учащихся к физическим олимпиадам высокого уровня. Его предметом является не повторение базового курса, а развитие специальных навыков, необходимых для анализа и решения нестандартных, олимпиадных задач.
Пособие С.Н. Маниды является специализированным и высокоэффективным инструментом для подготовки к олимпиадам по физике. Его ценность заключается в аутентичности задач и методологической ориентированности на развитие сложного физического мышления.
Книга может быть рекомендована в качестве основного практикума для школьников, целенаправленно готовящихся к участию в олимпиадах высокого уровня, а также для преподавателей и руководителей физических кружков в качестве источника задач и методических идей. Для широкой аудитории пособие представляет ограниченный интерес ввиду своей узкой специализации и высокого порога входа.
Пособие С.Н. Маниды «Физика. Решение задач повышенной сложности» заслуживает более пристального внимания не только как сборник задач, но и как отражение определенной педагогической философии в области преподавания физики. Его внутренняя структура и подход позволяют выявить несколько ключевых принципов, делающих его ценным именно в узком, но критически важном сегменте работы с одаренными детьми.
▪️ Для учащегося: Это не книга для "подготовки к ЕГЭ". Это интеллектуальный тренажер, работа с которым сопоставима с занятиями со строгим тренером. Она требует вдумчивости, усидчивости и готовности к тому, что на одну задачу можно потратить несколько часов. Результатом является не только знание конкретных методов, но и устойчивый навык самостоятельного исследования незнакомой проблемы.
▪️ Для педагога: Это источник не просто задач, а идей для преподавания. Методика разбора, подбор условий, заставляющих думать, а не вспоминать, – все это делает книгу Маниды ценным пособием для составления занятий в физмат-кружках и для индивидуальной работы с сильными учениками.
Таким образом, книга С.Н. Маниды представляет собой не просто архаичный сборник олимпиадных задач. Это методически выверенная система, нацеленная на формирование исследовательской культуры мышления. Её продолжающаяся актуальность в узких профессиональных кругах свидетельствует о том, что заложенные в ней принципы – фокус на физической сути, поиск изящного решения и системный подход – являются непреходящей ценностью в физическом образовании. #физика #physics #подборка_книг #наука #science #олимпиады
💡 Physics.Math.Code // @physics_lib
Данное пособие предназначено для целенаправленной подготовки учащихся к физическим олимпиадам высокого уровня. Его предметом является не повторение базового курса, а развитие специальных навыков, необходимых для анализа и решения нестандартных, олимпиадных задач.
Пособие С.Н. Маниды является специализированным и высокоэффективным инструментом для подготовки к олимпиадам по физике. Его ценность заключается в аутентичности задач и методологической ориентированности на развитие сложного физического мышления.
Книга может быть рекомендована в качестве основного практикума для школьников, целенаправленно готовящихся к участию в олимпиадах высокого уровня, а также для преподавателей и руководителей физических кружков в качестве источника задач и методических идей. Для широкой аудитории пособие представляет ограниченный интерес ввиду своей узкой специализации и высокого порога входа.
Пособие С.Н. Маниды «Физика. Решение задач повышенной сложности» заслуживает более пристального внимания не только как сборник задач, но и как отражение определенной педагогической философии в области преподавания физики. Его внутренняя структура и подход позволяют выявить несколько ключевых принципов, делающих его ценным именно в узком, но критически важном сегменте работы с одаренными детьми.
▪️ Для учащегося: Это не книга для "подготовки к ЕГЭ". Это интеллектуальный тренажер, работа с которым сопоставима с занятиями со строгим тренером. Она требует вдумчивости, усидчивости и готовности к тому, что на одну задачу можно потратить несколько часов. Результатом является не только знание конкретных методов, но и устойчивый навык самостоятельного исследования незнакомой проблемы.
▪️ Для педагога: Это источник не просто задач, а идей для преподавания. Методика разбора, подбор условий, заставляющих думать, а не вспоминать, – все это делает книгу Маниды ценным пособием для составления занятий в физмат-кружках и для индивидуальной работы с сильными учениками.
Таким образом, книга С.Н. Маниды представляет собой не просто архаичный сборник олимпиадных задач. Это методически выверенная система, нацеленная на формирование исследовательской культуры мышления. Её продолжающаяся актуальность в узких профессиональных кругах свидетельствует о том, что заложенные в ней принципы – фокус на физической сути, поиск изящного решения и системный подход – являются непреходящей ценностью в физическом образовании. #физика #physics #подборка_книг #наука #science #олимпиады
💡 Physics.Math.Code // @physics_lib
👍45🔥17❤13🤝4💯2❤🔥1🤩1
1. Уравнение Эйнштейна: Общая теория относительности : G_μν = 8πG/c⁴ * T_μν
Что оно значит: Материя и энергия говорят пространству-времени, как искривляться, а искривлённое пространство-время говорит материи, как двигаться.
Почему это красиво: Оно связывает геометрию Вселенной с её содержимым. Без него не работали бы GPS, и мы не знали бы о чёрных дырах. Это уравнение — квинтэссенция идеи «геометрия как физика».
2. Стандартная модель (Лагранжиан)
Что он значит: Это полная теория трёх из четырёх фундаментальных взаимодействий (электромагнитного, сильного и слабого) и всех известных элементарных частиц.
Почему это красиво: Это вершина человеческого понимания микромира. Оно с пугающей точностью предсказывает поведение квантовой вселенной. Его экспериментальное подтверждение на БАКе — триумф человеческого разума.
3. Второй закон Ньютона: F = ma
Что он значит: Сила, действующая на тело, равна произведению его массы на ускорение.
Почему это красиво: Гениальная простота. Это основа всей классической механики. От полёта ракет до качения мяча — всё описывается этим лаконичным уравнением. Оно научило нас предсказывать движение.
4. Уравнения Максвелла:
∇·E = ρ/ε₀, ∇×E = -∂B/∂t, ∇·B = 0, ∇×B = μ₀J + μ₀ε₀∂E/∂t
Что они значат: Эти четыре уравнения — полное описание всего электричества и магнетизма. Они объединили их в единое явление — электромагнетизм.
Почему это красиво: Из них, как следствие, вытекает существование электромагнитных волн (свет, радиоволны, рентген). Мы поняли, что свет — это и есть колебания электромагнитного поля. Фундамент современной цивилизации.
5. Уравнение Шрёдингера: iℏ ∂/∂t |Ψ> = Ĥ |Ψ>
Что оно значит: Оно описывает, как со временем изменяется квантовая состояние частицы (волновая функция Ψ).
Почему это красиво: Это сердце квантовой механики. Оно отбросило детерминизм Ньютона и ввело нас в мир вероятностей и фундаментальной неопределённости. Мир на самом маленьком уровне устроен именно так, как диктует это уравнение.
Эти уравнения — не просто символы на доске. Это архитектура нашей реальности. Они — доказательство того, что человеческий разум способен постигать самые сокровенные секреты Вселенной.
А какое уравнение нравится больше всего вам? Какое самое сложное для вас? #science #physics #физика #опыты #наука #квантовая_физика #квантовая_механика #эксперименты
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
❤121🔥49👍22⚡12🫡4❤🔥2😱2🥰1
This media is not supported in your browser
VIEW IN TELEGRAM
Керосин (др.-греч. κηρός — «воск») — горючая смесь жидких углеводородов (от C₈ до C₁₅) с температурой кипения от +150 до +250 °C, прозрачная, бесцветная (или слегка желтоватая), слегка маслянистая на ощупь, получаемая путём прямой перегонки или ректификации нефти. Керосин применяют как реактивное топливо в самолётах и ракетах (авиационный керосин), горючее при обжиге стеклянных и фарфоровых изделий, для бытовых нагревательных и осветительных приборов (керосин осветительный), в аппаратах для резки металлов, как растворитель (например, для нанесения пестицидов), в качестве рабочей жидкости в электроэрозионных станках, сырья для нефтеперерабатывающей промышленности. Керосин может использоваться как заменитель зимнего и арктического дизтоплива для дизельных двигателей, однако необходимо добавить противоизносные и цетаноповышающие присадки; цетановое число керосина около 40, ГОСТ требует не менее 45. Для многотопливных двигателей (на основе дизельного двигателя) возможно кратковременное применение чистого керосина и даже бензина АИ-80. Зимой допускается добавление до 20 % керосина в летнее дизельное топливо для снижения температуры застывания, при этом не ухудшаются эксплуатационные характеристики. Также керосин — основное топливо для проведения фаер-шоу (огненных представлений), из-за хорошей впитываемости и относительно низкой температуры горения. Применяется также для промывки механизмов, для удаления ржавчины. #механика #физика #physics #термодинамика #мкт #опыты
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥69👍29❤13⚡3💯2🫡2❤🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
🧲 При вращении магнита на отвертке, магнит постоянно поднимается вверх. Объясните с точки зрения физики почему так происходит?
How Do Magnets Climb This Screwdriver?
#механика #физика #опыты #эксперименты #задачи #physics #science #наука #магнетизм
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
❤44👍20🤯10🔥6🤔5👏4😭2
Media is too big
VIEW IN TELEGRAM
Если добавить жидкий газ в бутылку с водой и перевернуть её, она взлетит. Можно взять любую теплую жидкость: вода, кола, спрайт. Самое важное — температура жидкости. Понадобится пластиковая бутылка и перчатки, чтобы не заморозить руки. И самые важный ингредиент — жидкий газ бутан (C₄H₁₀). Температура кипения бутана -0.5 °С. Это означает, что в жидком состоянии он находится при температуре t < -0.5 °С. Достаточно будет наполнить 2/3 бутылки водой, а 1/3 наполнить жидким газом. Через несколько секунд можно будет увидеть, как на поверхности воды плавает жидкость бутанового раствора. Между ними находится газообразная прослойка. Это тот самый эффект Лейденфроста, о котором уже был пост в нашем канале.
Эффект Лейденфроста — это физическое явление, при котором жидкость при непосредственном контакте с массой, температура которой значительно выше температуры кипения жидкости, образует изолирующий слой пара, препятствующий быстрому кипению этой жидкости. Благодаря этому капля парит над поверхностью, а не вступает с ней в физический контакт. Чаще всего это наблюдается при приготовлении пищи; капельки воды капают в кастрюлю, чтобы измерить ее температуру: если температура в кастрюле равна или выше температуры точки Лейденфроста, то вода растекается по сковороде и испаряется дольше, чем в кастрюле с температурой ниже точки Лейденфроста (но все равно выше температуры кипения). Этот эффект также обусловливает способность жидкого азота распространяться по полу.
Итак, холодный бутан плавает на поверхности теплой воды на паровой прослойке. Как только мы переворачиваем бутылку, скорость реакции испарения мгновенно возрастает. Во время переворачивания бутылки теплая вода смешивается с бутаном, и бутан немедленно превращается в газ, который увеличивается в объем более чем в 10 раз. В результате он стремительно пытается выйти из бутылки, поэтом образуется реактивная тяга через узкое горлышко — наша ракета взлетает.
#механика #физика #опыты #эксперименты #динамика #кинематика #physics #лекции #science #наука
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍94🔥37❤25👻14😱5⚡3🤯3🤷♀1🤨1😈1
Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
🧲 Удивительные свойства магнитного поля, визуализация поля с помощью металлических палочек или стружки
Магнит и железная стружка: Почему железные опилки, притянувшись к полюсу магнита, образуют кисти, отталкивающиеся друг от друга? Опилки намагничиваются, а затем располагаются по магнитным линиям магнитного поля, притягиваясь одним полюсом к магниту, а другим отталкиваясь друг от друга.
Неодимовый магнит — мощный постоянный магнит, состоящий из сплава редкоземельного элемента неодима, бора и железа. Кристаллическая структура имеет тетрагональную форму и представлена формулой Nd₂Fe₁₄B. Известен своей мощностью притяжения и высокой стойкостью к размагничиванию. Имеет металлический блеск, обусловленный покрытием (на изломе — серый), очень востребован и применяется в разных областях промышленности, медицины, в быту и электронике. #физика #physics #gif #видеоуроки #научные_фильмы #колебания #электричество #физика #опыты #магнетизм
💡 Physics.Math.Code // @physics_lib
Магнит и железная стружка: Почему железные опилки, притянувшись к полюсу магнита, образуют кисти, отталкивающиеся друг от друга? Опилки намагничиваются, а затем располагаются по магнитным линиям магнитного поля, притягиваясь одним полюсом к магниту, а другим отталкиваясь друг от друга.
Неодимовый магнит — мощный постоянный магнит, состоящий из сплава редкоземельного элемента неодима, бора и железа. Кристаллическая структура имеет тетрагональную форму и представлена формулой Nd₂Fe₁₄B. Известен своей мощностью притяжения и высокой стойкостью к размагничиванию. Имеет металлический блеск, обусловленный покрытием (на изломе — серый), очень востребован и применяется в разных областях промышленности, медицины, в быту и электронике. #физика #physics #gif #видеоуроки #научные_фильмы #колебания #электричество #физика #опыты #магнетизм
💡 Physics.Math.Code // @physics_lib
🔥25👍18❤13⚡4🤔1
💦 Моделирование жидкости (англ. fluid simulation) — область компьютерной графики, использующая средства вычислительной гидродинамики для реалистичного моделирования, анимации и визуализации жидкостей, газов, взрывов и других связанных с этим явлений. Имея на входе некую жидкость и геометрию сцены, симулятор жидкости моделирует её поведение и движение во времени, принимая в расчёт множество физических сил, объектов и взаимодействий. Моделирование жидкости широко используется в компьютерной графике и ранжируется по вычислительной сложности от высокоточных вычислений для кинофильмов и спецэффектов до простых аппроксимаций, работающих в режиме реального времени и использующихся преимущественно в компьютерных играх.
Существует несколько конкурирующих методов моделирования жидкости, каждый из которых имеет свои преимущества и недостатки. Наиболее распространёнными являются сеточные методы Эйлера, гидродинамика сглаженных частиц (англ. smoothed particle hydrodynamics — SPH), методы, основанные на завихрениях, и метод решёточных уравнений Больцмана. Эти методы возникли в среде вычислительной гидродинамики и были позаимствованы для практических задач в индустрии компьютерной графики и спецэффектов. Основное требование к данным методам со стороны компьютерной графики — визуальная правдоподобность. Иными словами, если наблюдатель при просмотре не может заметить неестественность анимации, то моделирование считается удовлетворительным. В физике, технике и математике, с другой стороны, основные требования предъявляются к физической корректности и точности моделирования, а не к её визуальному результату.
В компьютерной графике самые ранние попытки решить уравнения Навье — Стокса в трёхмерном пространстве были предприняты в 1996 году Ником Фостером (англ. Nick Foster) и Димитрисом Метаксасом (англ. Dimitris Metaxas). Их работа в качестве основы использовала более раннюю работу по вычислительной гидродинамике, которая была опубликована в 1965 году Харлоу (англ. Harlow) и Уэлшем (англ. Welch). До работы Фостера и Метаксаса многие методы моделирования жидкости были построены на основе специальных систем частиц, методах снижения размерности (типа двухмерные модели мелких водяных объёмов типа луж) и полу-случайных шумовых турбулентных полях. В 1999 году на SIGGRAPH Джос Стэм (англ. Jos Stam) опубликовал метод так называемых «стабильных жидкостей» (англ. Stable Fluids), который использовал полу-лагранжевый метод адвекции и неявные интеграции вязкости для обеспечения безусловно устойчивого поведения жидкости. Это позволило моделировать жидкости со значительно большим временным шагом и в общем привело к более быстрым программам. Позже, в 2001—2002 годах, этот метод был расширен Роном Федкивым вместе со своими сотрудниками, благодаря чему стало возможным обрабатывать сложную модель воды в трёхмерной сцене с использованием метода установленного уровня (англ. Level set method). #математика #физика #наука #gif #образование #разработка_игр #gamedev #math #physics
💡 Physics.Math.Code // @physics_lib
Существует несколько конкурирующих методов моделирования жидкости, каждый из которых имеет свои преимущества и недостатки. Наиболее распространёнными являются сеточные методы Эйлера, гидродинамика сглаженных частиц (англ. smoothed particle hydrodynamics — SPH), методы, основанные на завихрениях, и метод решёточных уравнений Больцмана. Эти методы возникли в среде вычислительной гидродинамики и были позаимствованы для практических задач в индустрии компьютерной графики и спецэффектов. Основное требование к данным методам со стороны компьютерной графики — визуальная правдоподобность. Иными словами, если наблюдатель при просмотре не может заметить неестественность анимации, то моделирование считается удовлетворительным. В физике, технике и математике, с другой стороны, основные требования предъявляются к физической корректности и точности моделирования, а не к её визуальному результату.
В компьютерной графике самые ранние попытки решить уравнения Навье — Стокса в трёхмерном пространстве были предприняты в 1996 году Ником Фостером (англ. Nick Foster) и Димитрисом Метаксасом (англ. Dimitris Metaxas). Их работа в качестве основы использовала более раннюю работу по вычислительной гидродинамике, которая была опубликована в 1965 году Харлоу (англ. Harlow) и Уэлшем (англ. Welch). До работы Фостера и Метаксаса многие методы моделирования жидкости были построены на основе специальных систем частиц, методах снижения размерности (типа двухмерные модели мелких водяных объёмов типа луж) и полу-случайных шумовых турбулентных полях. В 1999 году на SIGGRAPH Джос Стэм (англ. Jos Stam) опубликовал метод так называемых «стабильных жидкостей» (англ. Stable Fluids), который использовал полу-лагранжевый метод адвекции и неявные интеграции вязкости для обеспечения безусловно устойчивого поведения жидкости. Это позволило моделировать жидкости со значительно большим временным шагом и в общем привело к более быстрым программам. Позже, в 2001—2002 годах, этот метод был расширен Роном Федкивым вместе со своими сотрудниками, благодаря чему стало возможным обрабатывать сложную модель воды в трёхмерной сцене с использованием метода установленного уровня (англ. Level set method). #математика #физика #наука #gif #образование #разработка_игр #gamedev #math #physics
💡 Physics.Math.Code // @physics_lib
👍61🔥29❤20✍7🤝2🤩1
This media is not supported in your browser
VIEW IN TELEGRAM
💧 Эффект Лейденфроста — явление, при котором жидкость в контакте с твёрдой поверхностью, значительно более горячей, чем точка кипения этой жидкости, образует теплоизолирующую прослойку пара между поверхностью и жидкостью, замедляющую быстрое выкипание, например, капли жидкости на этой поверхности. Также это явление называют кризисом кипения. Посмотреть ещё видео по теме данного явления здесь.
При контакте жидкости с поверхностью, нагретой значительно выше температуры кипения жидкости, возникает устойчивый слой пара, который термодинамически изолирует жидкость от поверхности. Это приводит к парадоксальному уменьшению теплоотвода и увеличению времени испарения капли.
1. При температурах поверхности выше точки Лейденфроста (для воды ~ 190-220 °C при атмосферном давлении) контактная часть капли мгновенно испаряется.
2. Образовавшийся паровый слой имеет низкую теплопроводность по сравнению с жидкостью.
3. Давление пара поддерживает каплю в левитирующем состоянии, минимизируя площадь непосредственного контакта.
4. Теплообмен происходит в основном за счет теплопроводности через пар и излучения.
Для количественного описания эффекта ключевым параметром является толщина паровой прослойки δ, определяемая балансом сил давления пара, вязкого трения в паре и гидростатического давления. Активные исследования посвящены динамике капель в режиме Лейденфроста (самоорганизованное движение, эффект ракеты), влиянию структурированных и супергидрофобных поверхностей на точку Лейденфроста, а также управлению теплообменом через модификацию текстуры поверхности.
▪️ Этот эффект объясняет поведение капель воды на раскалённой сковороде.
▪️ Криогенная безопасность: явление позволяет кратковременно погружать руку в жидкий азот без мгновенного обморожения.
▪️ Применяется в промышленных процессах, где требуется контролируемое охлаждение (термообработка).
▪️Аналогичный эффект наблюдается для других пар фаз: твёрдое тело на перегретой поверхности расплава (эффект Кузнецова).
#физика #термодинамика #мкт #опыты #эксперименты #physics #видеоуроки #gif
💡 Physics.Math.Code // @physics_lib
При контакте жидкости с поверхностью, нагретой значительно выше температуры кипения жидкости, возникает устойчивый слой пара, который термодинамически изолирует жидкость от поверхности. Это приводит к парадоксальному уменьшению теплоотвода и увеличению времени испарения капли.
1. При температурах поверхности выше точки Лейденфроста (для воды ~ 190-220 °C при атмосферном давлении) контактная часть капли мгновенно испаряется.
2. Образовавшийся паровый слой имеет низкую теплопроводность по сравнению с жидкостью.
3. Давление пара поддерживает каплю в левитирующем состоянии, минимизируя площадь непосредственного контакта.
4. Теплообмен происходит в основном за счет теплопроводности через пар и излучения.
Для количественного описания эффекта ключевым параметром является толщина паровой прослойки δ, определяемая балансом сил давления пара, вязкого трения в паре и гидростатического давления. Активные исследования посвящены динамике капель в режиме Лейденфроста (самоорганизованное движение, эффект ракеты), влиянию структурированных и супергидрофобных поверхностей на точку Лейденфроста, а также управлению теплообменом через модификацию текстуры поверхности.
▪️ Этот эффект объясняет поведение капель воды на раскалённой сковороде.
▪️ Криогенная безопасность: явление позволяет кратковременно погружать руку в жидкий азот без мгновенного обморожения.
▪️ Применяется в промышленных процессах, где требуется контролируемое охлаждение (термообработка).
▪️Аналогичный эффект наблюдается для других пар фаз: твёрдое тело на перегретой поверхности расплава (эффект Кузнецова).
#физика #термодинамика #мкт #опыты #эксперименты #physics #видеоуроки #gif
💡 Physics.Math.Code // @physics_lib
👍40🔥11❤8🤩2⚡1
This media is not supported in your browser
VIEW IN TELEGRAM
💧 Батавские слёзки или капли принца Руперта (англ. Prince Rupert's drops) — застывшие капли закалённого стекла, обладающие чрезвычайно высокими внутренними механическими напряжениями. Скорее всего, подобные стеклянные капли были известны стеклодувам с незапамятных времён, однако внимание учёных они привлекли в середине XVII века.
Если капнуть расплавленным стеклом в холодную воду и стекло после этого не лопнет, а начнёт застывать, получается капля в форме головастика, с длинным изогнутым «хвостом». При этом «голова» капли обладает исключительной прочностью, по ней можно бить металлическим молотком в полную силу, и в зависимости от объёма она выдерживает усилие гидравлического пресса до 30 тонн, оставляя вмятину на стали.
Но стоит надломить или просто задеть «хвост» капли, и она мгновенно разлетается на мелкие осколки, по направлению от «хвоста» к «голове». По этой причине надламывание желательно проводить под слоем жидкости, и инструментом типа щипцов, так как при этом опыте помимо опасности от самого стекла происходит гидроудар из-за очень резкого расширения поля осколков. На кадрах, зарегистрированных с помощью высокоскоростной съёмки, видно, что фронт «взрыва» движется по капле с большой скоростью: 1,2 км/с (для сравнения: скорость звука в воздухе 0,34 км/с, скорость детонации взрывчатки — 2—9 км/с).
Если опыт проводится в темноте, заметна также триболюминесценция. В поляризованном свете видно, что капля не изотропна, а испытывает сильные внутренние напряжения, что и вызывает такие свойства.
#физика #сопромат #physics #mechanics #механика #опыты #кинематика #эксперименты #видеоуроки
💡 Physics.Math.Code // @physics_lib
Если капнуть расплавленным стеклом в холодную воду и стекло после этого не лопнет, а начнёт застывать, получается капля в форме головастика, с длинным изогнутым «хвостом». При этом «голова» капли обладает исключительной прочностью, по ней можно бить металлическим молотком в полную силу, и в зависимости от объёма она выдерживает усилие гидравлического пресса до 30 тонн, оставляя вмятину на стали.
Но стоит надломить или просто задеть «хвост» капли, и она мгновенно разлетается на мелкие осколки, по направлению от «хвоста» к «голове». По этой причине надламывание желательно проводить под слоем жидкости, и инструментом типа щипцов, так как при этом опыте помимо опасности от самого стекла происходит гидроудар из-за очень резкого расширения поля осколков. На кадрах, зарегистрированных с помощью высокоскоростной съёмки, видно, что фронт «взрыва» движется по капле с большой скоростью: 1,2 км/с (для сравнения: скорость звука в воздухе 0,34 км/с, скорость детонации взрывчатки — 2—9 км/с).
Если опыт проводится в темноте, заметна также триболюминесценция. В поляризованном свете видно, что капля не изотропна, а испытывает сильные внутренние напряжения, что и вызывает такие свойства.
#физика #сопромат #physics #mechanics #механика #опыты #кинематика #эксперименты #видеоуроки
💡 Physics.Math.Code // @physics_lib
🔥97👍32❤28✍7😱3🤩3🤯2
This media is not supported in your browser
VIEW IN TELEGRAM
🎈 Резиновый шарик в тепловизоре 🔥
Рассмотрим видео от нашего подписчика. Ранее на канале был уже такой опыт. Кратко о происходящем: Резиновый шарик растягивают ➜ Он нагревается (это видно в тепловизоре) ➜ Ждут пока температура выровняется ➜ Резко отпускают, шарик принимает обратно свою форму, но в тепловизоре заметно сильно охлаждение. Этот опыт демонстрирует обратный (или аномальный) термоупругий эффект Гоу-Джуля в резине. Это фундаментальное свойство каучуков и эластомеров, и внутренние напряжения здесь играют ключевую роль.
1. Растяжение шарика (Нагревание): Вы прикладываете силу, чтобы растянуть сетку полимерных цепей, из которых состоит резина. В нерастянутом состоянии длинные, хаотично свернутые полимерные молекулы находятся в состоянии с максимальной энтропией (максимальным беспорядком). При растяжении вы вынуждаете эти цепи выпрямляться и ориентироваться вдоль направления растяжения. Система становится более упорядоченной — её энтропия уменьшается. С термодинамической точки зрения, резиновая деформация — это в первую очередь энтропийный процесс. Внутренняя энергия цепи почти не меняется при растяжении. Согласно уравнению состояния идеального эластомера (аналог уравнения Клапейрона-Менделеева для газов): σ ~ T, где σ — напряжение, T — температура. При постоянной длине растяжения увеличение температуры повышает напряжение. Когда вы растягиваете шарик быстро (адиабатически), системе не хватает времени для теплообмена. Уменьшение энтропии (увеличение упорядоченности) при постоянной внутренней энергии должно сопровождаться выделением тепла, чтобы выполнялись законы термодинамики. Работа, совершаемая вами над резиной, переходит не в увеличение потенциальной энергии межмолекулярных связей (как в металле), а в уменьшение энтропии и, как следствие, в повышение температуры. Внутренние напряжения здесь — прямое следствие вынужденного снижения энтропии цепей.
2. Ожидание (Теплообмен): Растянутый шарик остывает до температуры окружающей среды, отдавая избыточное тепло. Теперь он находится в равновесном растянутом состоянии при комнатной температуре, но с высоким уровнем внутренних (энтропийных) напряжений. Цепи остаются в вытянутом, неестественном для них состоянии.
3. Резкое отпускание (Сильное охлаждение): Вы убираете внешнюю силу. Внутренние напряжения, запасенные в выпрямленных полимерных цепях, теперь выполняют работу. Цепи начинают стремительно сворачиваться обратно в хаотичные клубки, чтобы вернуться в состояние с максимальной энтропией (максимальным беспорядком). Этот процесс быстрого сворачивания (сжатия) является энтропийно-двигательной силой. Цепи совершают работу по сворачиванию, преодолевая внутреннее трение (вязкое сопротивление). Для совершения этой работы им нужна энергия. Поскольку процесс быстрый (адиабатический), эта энергия берется из их собственной тепловой (кинетической) энергии. В результате температура полимерной сетки резко падает. Это прямое следствие преобразования внутренней тепловой энергии в механическую работу, совершаемую против вязких сил при сворачивании.
❓ А теперь пара вопросов по опыту:
1. Почему шарик сильнее охлаждается в той части, где есть переход в более широкий участок резины?
2. С железной пружиной будет точно такие же результаты? Если мы растянем пружину, потом подождем и дадим ей вернуться в исходное состояние, то она охладится?
#физика #механика #видеоуроки #science #термодинамика #МКТ #physics #опыты #эксперименты
💡 Physics.Math.Code // @physics_lib
Рассмотрим видео от нашего подписчика. Ранее на канале был уже такой опыт. Кратко о происходящем: Резиновый шарик растягивают ➜ Он нагревается (это видно в тепловизоре) ➜ Ждут пока температура выровняется ➜ Резко отпускают, шарик принимает обратно свою форму, но в тепловизоре заметно сильно охлаждение. Этот опыт демонстрирует обратный (или аномальный) термоупругий эффект Гоу-Джуля в резине. Это фундаментальное свойство каучуков и эластомеров, и внутренние напряжения здесь играют ключевую роль.
1. Растяжение шарика (Нагревание): Вы прикладываете силу, чтобы растянуть сетку полимерных цепей, из которых состоит резина. В нерастянутом состоянии длинные, хаотично свернутые полимерные молекулы находятся в состоянии с максимальной энтропией (максимальным беспорядком). При растяжении вы вынуждаете эти цепи выпрямляться и ориентироваться вдоль направления растяжения. Система становится более упорядоченной — её энтропия уменьшается. С термодинамической точки зрения, резиновая деформация — это в первую очередь энтропийный процесс. Внутренняя энергия цепи почти не меняется при растяжении. Согласно уравнению состояния идеального эластомера (аналог уравнения Клапейрона-Менделеева для газов): σ ~ T, где σ — напряжение, T — температура. При постоянной длине растяжения увеличение температуры повышает напряжение. Когда вы растягиваете шарик быстро (адиабатически), системе не хватает времени для теплообмена. Уменьшение энтропии (увеличение упорядоченности) при постоянной внутренней энергии должно сопровождаться выделением тепла, чтобы выполнялись законы термодинамики. Работа, совершаемая вами над резиной, переходит не в увеличение потенциальной энергии межмолекулярных связей (как в металле), а в уменьшение энтропии и, как следствие, в повышение температуры. Внутренние напряжения здесь — прямое следствие вынужденного снижения энтропии цепей.
2. Ожидание (Теплообмен): Растянутый шарик остывает до температуры окружающей среды, отдавая избыточное тепло. Теперь он находится в равновесном растянутом состоянии при комнатной температуре, но с высоким уровнем внутренних (энтропийных) напряжений. Цепи остаются в вытянутом, неестественном для них состоянии.
3. Резкое отпускание (Сильное охлаждение): Вы убираете внешнюю силу. Внутренние напряжения, запасенные в выпрямленных полимерных цепях, теперь выполняют работу. Цепи начинают стремительно сворачиваться обратно в хаотичные клубки, чтобы вернуться в состояние с максимальной энтропией (максимальным беспорядком). Этот процесс быстрого сворачивания (сжатия) является энтропийно-двигательной силой. Цепи совершают работу по сворачиванию, преодолевая внутреннее трение (вязкое сопротивление). Для совершения этой работы им нужна энергия. Поскольку процесс быстрый (адиабатический), эта энергия берется из их собственной тепловой (кинетической) энергии. В результате температура полимерной сетки резко падает. Это прямое следствие преобразования внутренней тепловой энергии в механическую работу, совершаемую против вязких сил при сворачивании.
1. Почему шарик сильнее охлаждается в той части, где есть переход в более широкий участок резины?
2. С железной пружиной будет точно такие же результаты? Если мы растянем пружину, потом подождем и дадим ей вернуться в исходное состояние, то она охладится?
#физика #механика #видеоуроки #science #термодинамика #МКТ #physics #опыты #эксперименты
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍52❤13🔥12🤯4👨💻2⚡1❤🔥1😱1🤨1🆒1
📗 Сборник избранных задач по физике [1986] Шаскольская М.П. Эльцин И.А.
Марианна Петровна Шаскольская (1913 — 1983) — советский кристаллограф и кристаллофизик.
💾 Скачать книгу
СОДЕРЖАНИЕ
Предисловие к первому изданию.
1. Кинематика.
2. Динамика поступательного движения.
3. Статика.
4. Работа, мощность, энергия. Закон сохранения импульса. Закон сохранения энергии
5. Динамика вращательного движения.
6. Закон всемирного тяготения.
7. Колебания. Волны. Звук.
8. Механика жидкостей и газов.
9. Теплота и капиллярные явления.
10. Электричество и магнетизм.
11. Оптика.
Для увлеченных старшеклассников, студентов младших курсов, участников олимпиад и всех, кто хочет понять физику глубже, а не просто выучить формулы. Отлично подходит для самостоятельных занятий и факультативов.
#физика #механика #оптика #термодинамика #мкт #электричество #магнетизм #physics
💡 Physics.Math.Code // @physics_lib
Марианна Петровна Шаскольская (1913 — 1983) — советский кристаллограф и кристаллофизик.
💾 Скачать книгу
СОДЕРЖАНИЕ
Предисловие к первому изданию.
1. Кинематика.
2. Динамика поступательного движения.
3. Статика.
4. Работа, мощность, энергия. Закон сохранения импульса. Закон сохранения энергии
5. Динамика вращательного движения.
6. Закон всемирного тяготения.
7. Колебания. Волны. Звук.
8. Механика жидкостей и газов.
9. Теплота и капиллярные явления.
10. Электричество и магнетизм.
11. Оптика.
Для увлеченных старшеклассников, студентов младших курсов, участников олимпиад и всех, кто хочет понять физику глубже, а не просто выучить формулы. Отлично подходит для самостоятельных занятий и факультативов.
#физика #механика #оптика #термодинамика #мкт #электричество #магнетизм #physics
💡 Physics.Math.Code // @physics_lib
👍31🔥11❤6❤🔥4✍2🤩1💯1
Сборник_избранных_задач_по_физике_1986_Шаскольская_М_П_Эльцин_И.djvu
3 MB
📗 Сборник избранных задач по физике [1986] Шаскольская М.П. Эльцин И.А.
В основе пособия — задачи, предлагавшиеся на физических олимпиадах, проводимых для школьников на физическом факультете Московского государственного университета. Все задачи снабжены решениями и методическими указаниями. Содержание задач не выходит за рамки программы средней школы, но понимание решений требует глубокого и продуманного освоения материала. В настоящем издании обновлены формулировки и решения задач, терминология и наименование единиц физических величин.
Для учащихся общеобразовательной и профессиональной школы, а также лиц, занимающихся самообразованием.
Сильные стороны книги:
1. Не задачи, а исследование: Задачи — не шаблонные упражнения, а тщательно отобранные, яркие физические ситуации. Они учат не применять формулу, а мыслить: анализировать условие, строить модель, искать неочевидные связи.
2. Идея «ступенек»: Многие задачи представлены серией усложняющихся вопросов, что позволяет плавно подвести решающего к ключевой идее. Это идеально для самостоятельного углубленного изучения.
3. Физика в приоритете: Акцент сделан на понимании сути явлений (механика, термодинамика, электромагнетизм, оптика), а не на сложной математике.
4. Качественные задачи: Значительная часть — это «качественные» вопросы на рассуждение, которые развивают физическую интуицию лучше, чем численные расчеты.
Несмотря на возраст, это один из лучших сборников для воспитания культуры физического мышления. Его ценность — в методике, а не в актуальности данных. Настоятельно рекомендуется всем, кто серьезно интересуется предметом.
#физика #механика #оптика #термодинамика #мкт #электричество #магнетизм #physics
💡 Physics.Math.Code // @physics_lib
В основе пособия — задачи, предлагавшиеся на физических олимпиадах, проводимых для школьников на физическом факультете Московского государственного университета. Все задачи снабжены решениями и методическими указаниями. Содержание задач не выходит за рамки программы средней школы, но понимание решений требует глубокого и продуманного освоения материала. В настоящем издании обновлены формулировки и решения задач, терминология и наименование единиц физических величин.
Для учащихся общеобразовательной и профессиональной школы, а также лиц, занимающихся самообразованием.
Сильные стороны книги:
1. Не задачи, а исследование: Задачи — не шаблонные упражнения, а тщательно отобранные, яркие физические ситуации. Они учат не применять формулу, а мыслить: анализировать условие, строить модель, искать неочевидные связи.
2. Идея «ступенек»: Многие задачи представлены серией усложняющихся вопросов, что позволяет плавно подвести решающего к ключевой идее. Это идеально для самостоятельного углубленного изучения.
3. Физика в приоритете: Акцент сделан на понимании сути явлений (механика, термодинамика, электромагнетизм, оптика), а не на сложной математике.
4. Качественные задачи: Значительная часть — это «качественные» вопросы на рассуждение, которые развивают физическую интуицию лучше, чем численные расчеты.
Несмотря на возраст, это один из лучших сборников для воспитания культуры физического мышления. Его ценность — в методике, а не в актуальности данных. Настоятельно рекомендуется всем, кто серьезно интересуется предметом.
#физика #механика #оптика #термодинамика #мкт #электричество #магнетизм #physics
💡 Physics.Math.Code // @physics_lib
🔥26👍18❤13😍2⚡1