Physics.Math.Code
143K subscribers
5.2K photos
2.05K videos
5.81K files
4.45K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

№ 6045941532

Обратная связь: @physicist_i
Download Telegram
Media is too big
VIEW IN TELEGRAM
Симистор (симметричный триодный тиристор, триак) — полупроводниковый прибор, разновидность тиристоров, используемый для коммутации в цепях переменного тока. В электронике часто рассматривается как управляемый выключатель (ключ).

Особенность симистора — способность проводить ток в обеих полярностях, в отличие от тиристора, который работает только в одном направлении. Это позволяет использовать симисторы в цепях переменного тока без дополнительной схемы мостового выпрямления. Симистор имеет три вывода: анод, катод и управляющий электрод (Gate).

Симисторы могут быть подключены к нагрузке различными способами, в зависимости от требований схемы:
▪️ Последовательное подключение — включается последовательно с нагрузкой, наиболее распространено для управления мощностью ламп, двигателей или нагревателей.
▪️ Мостовая схема — используется в мостовой конфигурации для управления мощностью в более сложных приложениях.

Принцип работы: Процесс включения симистора начинается с подачи импульса на управляющий электрод (Gate). Когда напряжение достигает определённого порогового значения, структура симистора переходит из состояния блокировки в состояние проводимости. В это время через прибор начинает течь ток.

Особенности симисторов: Способность к самозадержке — после срабатывания (включения) симистор остаётся в проводящем состоянии до тех пор, пока ток через него не упадёт ниже определённого уровня. Этот принцип работает, даже если сигнал на управляющем электроде пропадёт.

Симисторы используются в различных устройствах, например:
▪️ регуляторы скорости электродвигателей;
▪️ преобразователи энергии;
▪️ световые регуляторы.

Существует два основных направления использования симисторов: для включения/выключения коммутации нагрузки в цепях переменного тока и для регулирования мощности, передаваемой в нагрузку путём изменения напряжения. #научные_фильмы #физика #электродинамика #электричество #магнетизм #science #видеоуроки #physics

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7630🔥145👻1
🔎 Линза Френеля представляет собой оптическую деталь со сложной ступенчатой поверхностью. Она может заменить как сферическую, так и цилиндрическую линзы, а также другие оптические детали, например, призмы, при этом ступени такой линзы могут быть разграничены концентрическими, спиральными или линейными канавками.

Идея создания более тонкой, более лёгкой линзы в виде серии кольцевых ступеней часто приписывалась Жоржу-Луи Леклерку де Бюффону. В то время как де Буффон предлагал шлифовать такую ​​линзу из одного куска стекла, маркиз де Кондорсе (1743-1794 гг.) предложил изготавливать её с отдельными секциями, установленными в раме. Французскому физику и инженеру Огюстену Жану Френелю чаще всего приписывали разработку многокомпонентной линзы для использования в маяках. Согласно журналу Smithsonian, первая линза Френеля была использована в 1823 году в Кордуанском маяке в устье лимана Жиронды; его свет можно было увидеть с расстояния более 32 км (20 миль). Шотландскому физику сэру Дейвиду Брюстеру приписывали убеждение руководства Британии использовать эти линзы в своих маяках.

💡 Линза Френеля, заменяющая сферическую линзу, состоит из концентрических колец, каждое из которых представляет собой участок конической поверхности с криволинейным профилем и является элементом поверхности сплошной линзы. Предложена Огюстеном Френелем для морских маяков. Благодаря такой конструкции линза Френеля имеет малую толщину и вес даже при большой угловой апертуре. Сечения колец у линзы построены таким образом, чтобы снижалась её сферическая аберрация, и лучи точечного источника, помещённого в фокусе линзы, после преломления в кольцах выходят практически параллельным пучком (в кольцевых линзах Френеля). #физика #оптика #опыты #видеоуроки #научные_фильмы #physics

💡 Physics.Math.Code // @physics_lib
👍5627🔥7❤‍🔥21🌚1
🕯🔍 Шлирен-метод (от нем. Schlieren — оптическая неоднородность) — способ обнаружения оптических неоднородностей в прозрачных, преломляющих средах, и выявления дефектов отражающих поверхностей.
Иногда его называют методом Тёплера — по имени автора, немецкого физика Августа Тёплера.

Шлирен-метод, разработанный в 1864 году Августом Тёплером, является развитием предложенного в 1857 году теневого метода Леона Фуко, разработанного для контроля геометрии при изготовлении сферических зеркал телескопов. Заключался метод Фуко в том, что проверяемое зеркало освещали точечным источником света. В центр кривизны сферы помещали непрозрачный экран с острой кромкой, затеняющий в формируемом изображении точечный источник, но не препятствующий лучам, рассеянным зеркалом из-за нарушения геометрии. Позднее такой экран стали называть ножом Фуко.

Если поверхность зеркала была строго сферичной, нож, перекрывая основной световой поток точечного источника, равномерно затенял формируемое зеркалом изображение. Если сфера имела дефекты — формируемое изображение, в зависимости от знака и степени ошибки радиуса локальной кривизны, имело светлые или тёмные области. Ориентируясь по такой разной освещённости, проводили дошлифовку зеркала.

Шлирен-метод получил особенно широкое распространение для визуализации различных процессов в воздушной среде. Это относится, например, к исследованиям распределения плотности воздушных потоков образующихся при обтекании моделей в аэродинамических трубах, то есть, в авиационной технике. Применяется, также в механике жидкости, баллистике, изучении распространения и смешивания газов и растворов, исследовании теплообмена за счет конвекции и т. п.
#physics #наука #физика #термодинамика #эксперименты #опыты #видеоуроки #научные_фильмы

💡 Physics.Math.Code // @physics_lib
28👍22🔥13🤯2👻2
This media is not supported in your browser
VIEW IN TELEGRAM
🪙 Разбираемся в пайке: Советы по соотношению олова и свинца и их влиянию

Эволюция технологий пайки в электронной промышленности ознаменовалась кардинальным переходом от традиционных припоев на основе свинца к экологически безопасным бессвинцовым альтернативам. В течение многих лет пайка на основе свинца, в основном с использованием сплавов олово-свинец, была отраслевым стандартом, ценившимся за доступность и превосходные физические свойства. Однако растущая осведомленность об опасностях для окружающей среды и здоровья, связанных со свинцом, привела к ужесточению правил, что побудило к исследованию и внедрению решений для бессвинцовой пайки. Припой на основе свинца относится к типу припоя, который содержит свинец в качестве одного из основных компонентов. Наиболее распространенной рецептурой припоя на основе свинца является сплав олово-свинец (Sn-Pb), в котором соотношение олова и свинца обычно составляет около 60:40. Это определенное соотношение часто называют эвтектическим составом, где сплав имеет определенную температуру плавления, что позволяет ему напрямую переходить из твердого состояния в жидкое и наоборот.

Бессвинцовый припой — это тип припоя, который не содержит свинца в качестве одного из своих основных компонентов. Переход к бессвинцовой пайке вызван проблемами окружающей среды и здоровья, связанными с использованием припоев на основе свинца. Различные бессвинцовые припои были разработаны в качестве альтернативы традиционному припою олово-свинец (Sn-Pb) с целью сохранить рабочие характеристики и надежность паяных соединений, одновременно устраняя токсичное воздействие свинца. Температура плавления бессвинцового припоя может находиться в диапазоне от 50 до 200 °C и выше. Для достаточной смачивающей способности бессвинцового припоя требуется примерно 2% флюса по массе.

Доступно несколько бессвинцовых припоев, и производители могут выбрать тот, который лучше всего соответствует их конкретным требованиям. Некоторые распространенные бессвинцовые припои включают в себя:
▪️ Олово-Висмут (Sn-Bi): Этот сплав имеет более низкую температуру плавления по сравнению с другими бессвинцовыми альтернативами, что делает его пригодным для применений, где желательны более низкие температуры пайки.
▪️ Олово-Серебро (Sn-Ag): Этот сплав без меди является еще одним популярным бессвинцовым сплавом. Он обеспечивает хорошую стойкость к термической усталости и широко используется в производстве электроники.
▪️ Олово-Цинк (Sn-Zn): Этот сплав используется в некоторых составах бессвинцовых припоев, предлагая альтернативу без использования серебра или меди.

#пайка #химия #схемотехника #физика #physics #видеоуроки #научные_фильмы #опыты

💡 Physics.Math.Code // @physics_lib
👍5628🤔7🔥4🙈1
💡 Физика вокруг нас всегда. И от знания законов физики может зависеть ваша жизнь. Наглядно рассмотрим пример, в котором кроется не только простейшая школьная механика, но и сложная теория колебаний, теория устойчивости дифференциальных уравнений.

⚙️ Правильная развесовка прицепа — залог безопасности движения.

Если вы уложите самые грузные вещи в хвост, то сделаете грубую и, возможно, непоправимую ошибку. При смещении центра тяжести далеко назад прицеп начнет сильно заносить, и этот занос будет развиваться по принципу маятника. Так что погасить это раскачивание очень сложно. Опасность ситуации также в том, что занос может вынести весь автопоезд на встречную полосу со всеми вытекающими последствиями.
#physics #физика #механика #опыты #видеоуроки #научные_фильмы

👨🏻‍💻 Physics.Math.Code // @phjysics_lib
👍8023🔥10💯5🤝2🤯1
⚡️ Электрический водяной мостик 💧

Если в стаканы поместить электроды и подать на них высокое напряжение, то деионизированная вода образует стабильный цилиндрический мост между двумя стаканами. Толщина мостика зависит от величины напряжения и, соответственно, проходящего тока.

Когда между двумя стаканами с водой создаётся разность потенциалов около 10 кВ, между стаканами может возникнуть тонкий водяной мостик. Силы поверхностного натяжения удерживают его на весу, а силы электрического давления не дают мостику распасться на отдельные капли. #gif #опыты #видеоуроки #физика #научные_фильмы #physics

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍54🔥23225🤔2
Media is too big
VIEW IN TELEGRAM
👩‍💻 Ричард Фейнман: Fun to Imagine. Полная версия [FHD качество]

Это интервью было снято у Ричарда Фейнмана дома и показано на канале BBC2, в виде нескольких коротких серий, в период с 8 июля по 12 августа 1983.
0:00:50 Колеблющиеся атомы
0:07:18 Огонь
0:12:08 Резиновые жгуты
0:14:54 Магниты
0:22:29 Электричество
0:32:06 Загадки о зеркале и поезде
0:37:46 Чудо зрения
0:43:40 Большие числа
0:55:01 Способы думать

#physics #math #математика #научные_фильмы #видеоуроки #физика #science #наука

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥7131👍16🤩41🌚1🗿1
This media is not supported in your browser
VIEW IN TELEGRAM
🛁 Эффект Лейденфроста — это явление, при котором жидкость в контакте с телом значительно более горячим, чем точка кипения этой жидкости, создаёт изолирующий слой пара, который предохраняет жидкость от быстрого выкипания. Явление названо в честь немецкого врача Иоганна Готтлоба Лейденфроста, который описал его в «Трактате о некоторых свойствах обыкновенной воды» в 1756 году.

Основная причина эффекта — это практически мгновенное испарение нижней части капли при контакте с раскалённой поверхностью. В этот момент происходит образование прослойки пара, которая как бы «подвешивает» неиспарившуюся часть капли над раскалённой поверхностью, не давая жидкости вступить с ней в прямой контакт.

В повседневной жизни явление можно наблюдать при приготовлении пищи: для оценки температуры сковороды на неё брызгают водой — если температура достигла или уже выше точки Лейденфроста, вода соберётся в капли, которые будут «скользить» по поверхности металла и испаряться дольше, чем если бы это происходило в сковороде, нагретой выше точки кипения воды, но ниже точки Лейденфроста. #физика #термодинамика #мкт #опыты #эксперименты #physics #видеоуроки #научные_фильмы

💧 Капля воды падающая на горячий металл 💥в Slow motion


💧 Эффект Лейденфроста

🚀 Что будет, если добавить жидкий газ в бутылку с водой

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍80🔥3631🤩8
⚙️ Подборка очень интересных учебных видео о физике работе ДВС

1. Как устроен автомобильный двигатель. 3D анимация сборки автомобильного двигателя внутреннего сгорания.
2. Как работает двухтактный двигатель скутера
3. Двигатель в разрезе
4. Как работает паровой двигатель
5. Двигатель Стирлинга
6. Миниатюрный паровой двигатель
7. Мини-двигатель с AliExpress
8. Паровой или реактивный двигатель
9. Конструкция ДВС
10. Конструирование систем смазки и охлаждения ДВС
#физика #physics #механика #видеоуроки #научные_фильмы #ДВС #техника #опыты #лекции

🐝 «Nano Bee». Двигатель объемом 0,006 см³

Самый маленький четырехцилиндровый ДВС в мире

Звёздообразный или радиальный двигатель

⚙️ Сферически объемная роторная машина и ещё немного о необычных вариантах ДВС.

⚙️ Роторный двигатель

💥💨 Как работает двухтактный двигатель скутера

⚙️ Сравнение моторных масел

⚙️ Авиационный гироскоп


💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍50🔥1512❤‍🔥4🤩21
This media is not supported in your browser
VIEW IN TELEGRAM
⚙️ Основное отличие двухтактного и четырёхтактного двигателей внутреннего сгорания (ДВС) заключается в количестве тактов — движений поршня, за которые происходит рабочий цикл. В двухтактном двигателе рабочий цикл совершается за один оборот коленчатого вала, в четырёхтактном — за два оборота.

▪️Двухтактный двигатель. Принцип работы: один полный рабочий цикл (впуск, сжатие, рабочий ход и выпуск) происходит за два такта поршня.
— Отдельного газораспределительного механизма нет — роль впускных и выпускных клапанов выполняют отверстия в стенках цилиндра.
— Топливо обычно смешивается с маслом для смазки движущихся частей.
— Мощность двухтактного двигателя при одинаковых размерах цилиндра и частоте вращения вала теоретически в два раза больше четырёхтактного за счёт большего числа рабочих циклов. Однако неполное использование хода поршня для расширения и затраты части вырабатываемой мощности на продувку приводят к увеличению мощности только на 60–70%.

▪️Четырехтактный двигатель. Принцип работы: рабочий цикл состоит из четырёх тактов (ходов поршня).
— Для переключения полости цилиндра на впуск и на выхлоп используется отдельный газораспределительный механизм.
— Каждая фаза газообмена выполняется во время отдельного полуоборота коленчатого вала.
— Расход топлива ниже, так как топливная смесь полностью сгорает в цилиндре, и только потом, когда открывается выпускной клапан, отработанные газы выходят наружу.
— Экологичность — за счёт полного сгорания топливной смеси выделяется меньше вредных веществ в атмосферу.
#физика #physics #механика #видеоуроки #научные_фильмы #ДВС #техника #опыты #лекции

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8031🔥10❤‍🔥31
Media is too big
VIEW IN TELEGRAM
📝 Квадратура круга [1972] Центрнаучфильм

Детская научно – познавательная картина о древней математической загадке, названной «квадратура круга», о дальнейшей истории этой математической задачи. Квадратура круга — задача, заключающаяся в нахождении способа построения с помощью циркуля и линейки (без шкалы с делениями) квадрата, равновеликого по площади данному кругу. Наряду с трисекцией угла и удвоением куба, является одной из самых известных неразрешимых задач на построение с помощью циркуля и линейки.

Квадратура круга — задача, заключающаяся в нахождении способа построения с помощью циркуля и линейки квадрата, равновеликого по площади данному кругу.

О свойствах параболы

Наш канал с научно-техническими фильмами: 🎥 Учебные фильмы 🎞 @maths_lib

#физика #математика #моделирование #опыты #эксперименты #physics #видеоуроки #научные_фильмы #math #geometry

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4534❤‍🔥13🔥9🤩1🫡1
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 В древние времена среди металлов наибольшим спросом пользовалась медь. Её добывали из россыпей и плавили из руды. Зародилась медная металлургия в Анатолии, а потом постепенно стала распространяться по Евразии. Самым древним сплавом является мышьяковистая медь, которую получали из золотистого мышьяковистого минерала аурипигмента и смеси медной руды еще в IV тыс. до н.э. Во II тыс. до н.э. на смену мышьяковистой меди пришла оловянная бронза, которая на Кикладских островах (Греция) была известна уже в III тыс. до н.э. В гончарных мастерских происходила плавка металлов, в процессе которой удавалось обнаружить сплавы с разными температурами плавления и легкоплавкие из них использовались в качестве припоя.

Результаты археологических раскопок позволяют утверждать, что пайка как средство соединения металлов известна человеку не мене пяти тысячелетий. В 1927-1928 гг. археолог Леонард Вуллей при раскопках города Ура на Евфрате обнаружил гробницу царицы Шуб-ат с золотыми сосудами, ручки которых были припаяны серебряно-золотым сплавом. Всё это относится к 3500 году до н.э. #факты #пайка #металлы #железо #химия #научные_фильмы #gif

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍85🔥3320❤‍🔥5🆒42😱1😈1