📚 4 лекции по теме: Конечные поля. // Константин Шрамов / ЛШСМ 2024
⭕️ Поле в алгебре — множество, для элементов которого определены операции сложения, взятия противоположного значения, умножения и деления (кроме деления на ноль), причём свойства этих операций близки к свойствам обычных числовых операций. Простейшим полем является поле рациональных чисел (дробей). Элементы поля не обязательно являются числами, поэтому, несмотря на то, что названия операций поля взяты из арифметики, определения операций могут быть далеки от арифметических.
Поле — основной предмет изучения теории полей. Рациональные, вещественные, комплексные числа, рациональные функции и вычеты по модулю заданного простого числа образуют поля.
Поле — это множество, в котором можно складывать, умножать, вычитать и делить. Например, это можно делать с рациональными, действительными или комплексными числами. Помимо этого, такие операции можно производить и в некоторых конечных множествах — они и называются конечными полями. В начале курса я расскажу про самые простые свойства конечных полей: порядок конечного поля, единственность конечного поля данного порядка, структуру мультипликативной группы. Потом мы обсудим существование решений над конечными полями у полиномиальных уравнений, степень которых мала по сравнению с количеством переменных (теорема Шевалле-Варнинга), и обсудим применения конечных полей к вопросам, которые формулируются над полем комплексных чисел (например, существование неподвижных точек у инволюций аффинного пространства).
Шрамов Константин Александрович — доктор физико-математических наук.
#научные_фильмы #математика #algebra #math #алгебра
💡 Physics.Math.Code // @physics_lib
⭕️ Поле в алгебре — множество, для элементов которого определены операции сложения, взятия противоположного значения, умножения и деления (кроме деления на ноль), причём свойства этих операций близки к свойствам обычных числовых операций. Простейшим полем является поле рациональных чисел (дробей). Элементы поля не обязательно являются числами, поэтому, несмотря на то, что названия операций поля взяты из арифметики, определения операций могут быть далеки от арифметических.
Поле — основной предмет изучения теории полей. Рациональные, вещественные, комплексные числа, рациональные функции и вычеты по модулю заданного простого числа образуют поля.
Поле — это множество, в котором можно складывать, умножать, вычитать и делить. Например, это можно делать с рациональными, действительными или комплексными числами. Помимо этого, такие операции можно производить и в некоторых конечных множествах — они и называются конечными полями. В начале курса я расскажу про самые простые свойства конечных полей: порядок конечного поля, единственность конечного поля данного порядка, структуру мультипликативной группы. Потом мы обсудим существование решений над конечными полями у полиномиальных уравнений, степень которых мала по сравнению с количеством переменных (теорема Шевалле-Варнинга), и обсудим применения конечных полей к вопросам, которые формулируются над полем комплексных чисел (например, существование неподвижных точек у инволюций аффинного пространства).
Шрамов Константин Александрович — доктор физико-математических наук.
#научные_фильмы #математика #algebra #math #алгебра
💡 Physics.Math.Code // @physics_lib
❤43👍20🔥7🤩7
➰ Брахистохрона (от греч. βράχιστος «кратчайший» + χρόνος «время») — кривая скорейшего спуска. Задача о её нахождении была поставлена в июне 1696 года Иоганном Бернулли следующим образом:
Решением задачи о брахистохроне является дуга циклоиды с горизонтальным основанием, точка возврата которой находится в точке A, или иными словами, имеющая вертикальную касательную в точке A. Примечательно, что время спуска до нижней точки не зависит от расположения начальной точки на дуге циклоиды.
И да — это не дуга окружности, как думал ранее пытавшийся решить похожую задачу Галилео Галилей. Но что же могли сделать математики 17 века? Им было трудно. Изначально Бернулли предполагал, что решение найдется за полгода, однако затем был вынужден продлить соревнование еще на полтора. Первым на сцену вышел Исаак Ньютон, решивший задачу за одну ночь (он просто узнал про неё больше, чем через полгода). Посмотрев на анонимное решение Иоганн Бернулли воскликнул: "Узнаю льва по следу его когтя". В методе Ньютона используются чисто геометрические выводы, которые, кстати, окончательно не были строго обоснованы. Но в одном Великий был прав: кривая наискорейшего спуска является перевернутой циклоидой. #математика #опыты #геометрия #gif #анимация #видеоуроки #math #geometry #вариационное_исчисление #интегральное_исчисление
💡 Physics.Math.Code // @physics_lib
Среди плоских кривых, соединяющих две данные точки A и B, лежащих в одной вертикальной плоскости ( B ниже A), найти ту, двигаясь по которой под действием только силы тяжести, сонаправленной отрицательной полуоси OY, материальная точка из A достигнет B за кратчайшее время.
Решением задачи о брахистохроне является дуга циклоиды с горизонтальным основанием, точка возврата которой находится в точке A, или иными словами, имеющая вертикальную касательную в точке A. Примечательно, что время спуска до нижней точки не зависит от расположения начальной точки на дуге циклоиды.
И да — это не дуга окружности, как думал ранее пытавшийся решить похожую задачу Галилео Галилей. Но что же могли сделать математики 17 века? Им было трудно. Изначально Бернулли предполагал, что решение найдется за полгода, однако затем был вынужден продлить соревнование еще на полтора. Первым на сцену вышел Исаак Ньютон, решивший задачу за одну ночь (он просто узнал про неё больше, чем через полгода). Посмотрев на анонимное решение Иоганн Бернулли воскликнул: "Узнаю льва по следу его когтя". В методе Ньютона используются чисто геометрические выводы, которые, кстати, окончательно не были строго обоснованы. Но в одном Великий был прав: кривая наискорейшего спуска является перевернутой циклоидой. #математика #опыты #геометрия #gif #анимация #видеоуроки #math #geometry #вариационное_исчисление #интегральное_исчисление
💡 Physics.Math.Code // @physics_lib
👍40❤20🔥7🤯2
This media is not supported in your browser
VIEW IN TELEGRAM
⭕️ Точки пересечения кругов на воде движутся по гиперболе
Кто сможет доказать данный факт математически?
#математика #math #maths #mathematics #геометрия #опыты #физика #physics
💡 Physics.Math.Code // @physics_lib
Кто сможет доказать данный факт математически?
#математика #math #maths #mathematics #геометрия #опыты #физика #physics
💡 Physics.Math.Code // @physics_lib
🔥63👍30❤10✍3🤯3🥰1
Media is too big
VIEW IN TELEGRAM
Для понимания процесса нужно записать на черновике два параметрических уравнения, которые получаются, когда кругл «катится» по плоскости:
x = r⋅t - h⋅sin(t)
y = r - h⋅cos(t)
Для эпициклоиды уже сложнее:
x = R⋅(m+1)⋅cos(m⋅t) - h⋅cos((m+1)⋅t)
y = R⋅(m+1)⋅sin(m⋅t) - h⋅sin((m+1)⋅t)
где
m = r/R
, R
— радиус неподвижной окружности (опорная поверхность), r
— радиус катящейся окружности. h
— расстояние от центра катящейся окружности до точки маркера (за которой мы следим, точка, которая рисует).Ну а если тут положить
R → ∞
и h → R
, то мы получаем уравнения классической циклоиды, график которой описывает крайняя точка на колесе машины, которая едет с постоянной скоростью и без проскальзывания.❓Математические вопросы для наших подписчиков:
▪️ Попробуйте выразить явную зависимость y(x). Получится у вас это сделать?
▪️ На видео видно, что мы получаем семейство кривых, которые после каждого полного «круга» немного смещаются. Для этого смещения обязательно ли число зубьев на маленьком колесе и число зубьев на опорной кривой должны быть взаимно простыми числами? Или достаточно лишь того, чтобы они отличались хотя бы на 1 ?
➰ Красота параметрических кривых
⭕️ Точки пересечения кругов на воде движутся по гиперболе
🕑 Экстремальная задача на смекалку
#математика #mathematics #animation #math #геометрия #geometry #gif
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍47❤19🔥10❤🔥4😱2🤩1
Привыкли к Евклиду, где параллельные не пересекаются, а сумма углов треугольника — 180°? Забудьте на минуту. Римановская геометрия — это мир, где пространство само по себе может быть искривленным. Представьте, что вы — муравей, ползущий по поверхности апельсина. Вам кажется, что вы движетесь по прямой, но на самом деле ваш путь изгибается вместе с кожурой. Это и есть основа идей Бернхарда Римана: геометрия определяется самой поверхностью (пространством), а не навязана ей извне. Потому что пространство искривлено. И всё зависит от текущей абстракции.
Общая теория относительности Эйнштейна — самое знаменитое применение римановой геометрии. Массивные объекты, такие как звёзды и планеты, искривляют пространство-время вокруг себя. Свет, движущийся «прямо», огибает их — именно так в 1919 году было получено первое подтверждение ОТО. А теперь немного малоизвестных фактов.
▪️ Факт 1: Треугольник с тремя прямыми углами.
На сфере можно построить треугольник, у которого все три угла — прямые (90°). Просто «пройдите» от экватора по нулевому меридиану до Северного полюса, поверните на 90° и спуститесь по 90-му меридиану обратно к экватору. Сумма углов = 270°.
▪️ Факт 2: Всё гениальное — не положительно.
Кривизна поверхности бывает не только положительной (как у сферы), но и отрицательной (как у седла — гиперболической параболоид). В таком мире через одну точку можно провести бесконечно много «прямых» (геодезических), не пересекающих данную линию. И сумма углов треугольника будет меньше 180°.
▪️ Факт 3: Теорема о «залысине» или «Теорема о причёсывании ежа»
Одно из самых элегантных следствий — Теорема Гаусса-Бонне. Грубо говоря, она связывает локальную кривизну поверхности с её глобальной топологией. Например, если вы будете гладить волосатый кокос (где «волосы» — это векторы), то как бы вы ни водили рукой, всегда останется хотя бы один «вихор» — точка, где кривизна не позволяет волосам лежать гладко. Это доказывает, что сферу нельзя сделать плоской, не разрывая её. На сфере (или любой другой поверхности, топологически эквивалентной сфере) невозможно гладко причесать "волосяное поле" без образования хотя бы одного вихря (или "залысины").
▪️ Факт 4: Наша Вселенная может быть конечной, но без границ.
Как и поверхность Земли конечна, но у неё нет края, так и наша 3D-Вселенная, согласно некоторым гипотезам, может быть аналогом 3-сферы — конечным объёмом, но без границ. Если бы вы полетели на космическом корабле «прямо», в итоге вы вернулись бы с обратной стороны.
Риманова геометрия — это не про заумные формулы. Это про новый язык, описывающий саму ткань реальности. От навигации GPS (где учитывается кривизна Земли) до квантовой гравитации и струнной теории — эта математика рисует карту мира, который куда причудливее и интереснее, чем нам кажется. Стол, на котором лежит ваша клавиатура или ноутбук, тоже обладает римановой геометрией. Просто его кривизна равна нулю. #математика #mathematics #animation #math #геометрия #geometry #gif
➰ Красота параметрических кривых
⭕️ Точки пересечения кругов на воде движутся по гиперболе
🕑 Экстремальная задача на смекалку
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍22❤16✍2🔥2🤯2🤔1💯1