📘 Секреты интересных интегралов [2020] Пол Дж. Нахин
📗 Inside Interesting Integrals [2020] Paul J. Nahin
💾 Скачать книги [RU + EN]
Издание доставит истинное удовольствие математикам, физикам, думающим студентам, а также всем читателям, кто еще только планирует стать великим учёным!
☕️ Для тех, кто захочет задонать на кофе:
ВТБ:
#математика #calculus #наука #math #science #лекции #maths #mathematics #книги
💡 Physics.Math.Code // @physics_lib
📗 Inside Interesting Integrals [2020] Paul J. Nahin
💾 Скачать книги [RU + EN]
Издание доставит истинное удовольствие математикам, физикам, думающим студентам, а также всем читателям, кто еще только планирует стать великим учёным!
«Если мы действительно что-то знаем, то мы знаем это благодаря изучению математики» (Пьер Гассенди).
☕️ Для тех, кто захочет задонать на кофе:
ВТБ:
+79616572047
(СБП) ЮMoney: 410012169999048
#математика #calculus #наука #math #science #лекции #maths #mathematics #книги
💡 Physics.Math.Code // @physics_lib
🔥43❤15👍12🤯3😍3
Секреты_интересных_интегралов_RU+EN.zip
50.9 MB
📘 Секреты интересных интегралов [2020] Пол Дж. Нахин
Коллекция ловких трюков, хитрых подстановок и множество других невероятно искусных, удивительно озорных и дьявольски соблазнительных маневров для вычисления почти 200 запутанных определенных интегралов из физики, техники и математики плюс 60 сложных задач с полными, подробными решениями!
Какой смысл вычислять определенные интегралы, если вы не можете все их решить? То, что делает ценным нахождение конкретных интегралов – это не решения и ответы, которые мы получим, а скорее методы, которые мы будем использовать для получения этих ответов; методы, которые вы можете использовать для нахождения будущих интегралов.
Если вам что-то говорят имена Римана, Бернулли, Эйлера, Френеля, Дирихле, Фурье, Коши, Фейнмана — эта книга точно для вас. Издание доставит истинное удовольствие математикам, физикам, думающим студентам, а также всем читателям, кто еще только планирует стать великим учёным!
📗 Inside Interesting Integrals [2020] Paul J. Nahin
What’s the point of calculating definite integrals since you can’t possibly do them all?
What makes doing the specific integrals in this book of value aren’t the specific answers we’ll obtain, but rather the methods we’ll use in obtaining those answers; methods you can use for evaluating the integrals you will encounter in the future.
This book, now in its second edition, is written in a light-hearted manner for students who have completed the first year of college or high school AP calculus and have just a bit of exposure to the concept of a differential equation. Every result is fully derived. If you are fascinated by definite integrals, then this is a book for you. New material in the second edition includes 25 new challenge problems and solutions, 25 new worked examples, simplified derivations, and additional historical discussion.
Paul J. Nahin is professor emeritus of electrical engineering at the University of New Hampshire. He is the
author of 21 books on mathematics, physics, and the history of science, published by Springer, and the university presses of Princeton and Johns Hopkins. He received the 2017 Chandler Davis Prize for Excellence in Expository Writing in Mathematics (for his paper “The Mysterious Mr. Graham,” The Mathematical Intelligencer, Spring 2016). He gave the invited 2011 Sampson Lectures in Mathematics at Bates College, Lewiston, Maine.
#математика #calculus #наука #math #science #лекции #maths #mathematics #книги
💡 Physics.Math.Code // @physics_lib
Коллекция ловких трюков, хитрых подстановок и множество других невероятно искусных, удивительно озорных и дьявольски соблазнительных маневров для вычисления почти 200 запутанных определенных интегралов из физики, техники и математики плюс 60 сложных задач с полными, подробными решениями!
Какой смысл вычислять определенные интегралы, если вы не можете все их решить? То, что делает ценным нахождение конкретных интегралов – это не решения и ответы, которые мы получим, а скорее методы, которые мы будем использовать для получения этих ответов; методы, которые вы можете использовать для нахождения будущих интегралов.
Если вам что-то говорят имена Римана, Бернулли, Эйлера, Френеля, Дирихле, Фурье, Коши, Фейнмана — эта книга точно для вас. Издание доставит истинное удовольствие математикам, физикам, думающим студентам, а также всем читателям, кто еще только планирует стать великим учёным!
📗 Inside Interesting Integrals [2020] Paul J. Nahin
What’s the point of calculating definite integrals since you can’t possibly do them all?
What makes doing the specific integrals in this book of value aren’t the specific answers we’ll obtain, but rather the methods we’ll use in obtaining those answers; methods you can use for evaluating the integrals you will encounter in the future.
This book, now in its second edition, is written in a light-hearted manner for students who have completed the first year of college or high school AP calculus and have just a bit of exposure to the concept of a differential equation. Every result is fully derived. If you are fascinated by definite integrals, then this is a book for you. New material in the second edition includes 25 new challenge problems and solutions, 25 new worked examples, simplified derivations, and additional historical discussion.
Paul J. Nahin is professor emeritus of electrical engineering at the University of New Hampshire. He is the
author of 21 books on mathematics, physics, and the history of science, published by Springer, and the university presses of Princeton and Johns Hopkins. He received the 2017 Chandler Davis Prize for Excellence in Expository Writing in Mathematics (for his paper “The Mysterious Mr. Graham,” The Mathematical Intelligencer, Spring 2016). He gave the invited 2011 Sampson Lectures in Mathematics at Bates College, Lewiston, Maine.
#математика #calculus #наука #math #science #лекции #maths #mathematics #книги
💡 Physics.Math.Code // @physics_lib
👍47❤24🔥16🤯4🤩4
This media is not supported in your browser
VIEW IN TELEGRAM
⭕️ Точки пересечения кругов на воде движутся по гиперболе
Кто сможет доказать данный факт математически?
#математика #math #maths #mathematics #геометрия #опыты #физика #physics
💡 Physics.Math.Code // @physics_lib
Кто сможет доказать данный факт математически?
#математика #math #maths #mathematics #геометрия #опыты #физика #physics
💡 Physics.Math.Code // @physics_lib
🔥64👍30❤10✍3🤯3🥰1
Media is too big
VIEW IN TELEGRAM
Для понимания процесса нужно записать на черновике два параметрических уравнения, которые получаются, когда кругл «катится» по плоскости:
x = r⋅t - h⋅sin(t)
y = r - h⋅cos(t)
Для эпициклоиды уже сложнее:
x = R⋅(m+1)⋅cos(m⋅t) - h⋅cos((m+1)⋅t)
y = R⋅(m+1)⋅sin(m⋅t) - h⋅sin((m+1)⋅t)
где
m = r/R
, R
— радиус неподвижной окружности (опорная поверхность), r
— радиус катящейся окружности. h
— расстояние от центра катящейся окружности до точки маркера (за которой мы следим, точка, которая рисует).Ну а если тут положить
R → ∞
и h → R
, то мы получаем уравнения классической циклоиды, график которой описывает крайняя точка на колесе машины, которая едет с постоянной скоростью и без проскальзывания.❓Математические вопросы для наших подписчиков:
▪️ Попробуйте выразить явную зависимость y(x). Получится у вас это сделать?
▪️ На видео видно, что мы получаем семейство кривых, которые после каждого полного «круга» немного смещаются. Для этого смещения обязательно ли число зубьев на маленьком колесе и число зубьев на опорной кривой должны быть взаимно простыми числами? Или достаточно лишь того, чтобы они отличались хотя бы на 1 ?
➰ Красота параметрических кривых
⭕️ Точки пересечения кругов на воде движутся по гиперболе
🕑 Экстремальная задача на смекалку
#математика #mathematics #animation #math #геометрия #geometry #gif
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍49❤19🔥10❤🔥4😱2🤩1
Привыкли к Евклиду, где параллельные не пересекаются, а сумма углов треугольника — 180°? Забудьте на минуту. Римановская геометрия — это мир, где пространство само по себе может быть искривленным. Представьте, что вы — муравей, ползущий по поверхности апельсина. Вам кажется, что вы движетесь по прямой, но на самом деле ваш путь изгибается вместе с кожурой. Это и есть основа идей Бернхарда Римана: геометрия определяется самой поверхностью (пространством), а не навязана ей извне. Потому что пространство искривлено. И всё зависит от текущей абстракции.
Общая теория относительности Эйнштейна — самое знаменитое применение римановой геометрии. Массивные объекты, такие как звёзды и планеты, искривляют пространство-время вокруг себя. Свет, движущийся «прямо», огибает их — именно так в 1919 году было получено первое подтверждение ОТО. А теперь немного малоизвестных фактов.
▪️ Факт 1: Треугольник с тремя прямыми углами.
На сфере можно построить треугольник, у которого все три угла — прямые (90°). Просто «пройдите» от экватора по нулевому меридиану до Северного полюса, поверните на 90° и спуститесь по 90-му меридиану обратно к экватору. Сумма углов = 270°.
▪️ Факт 2: Всё гениальное — не положительно.
Кривизна поверхности бывает не только положительной (как у сферы), но и отрицательной (как у седла — гиперболической параболоид). В таком мире через одну точку можно провести бесконечно много «прямых» (геодезических), не пересекающих данную линию. И сумма углов треугольника будет меньше 180°.
▪️ Факт 3: Теорема о «залысине» или «Теорема о причёсывании ежа»
Одно из самых элегантных следствий — Теорема Гаусса-Бонне. Грубо говоря, она связывает локальную кривизну поверхности с её глобальной топологией. Например, если вы будете гладить волосатый кокос (где «волосы» — это векторы), то как бы вы ни водили рукой, всегда останется хотя бы один «вихор» — точка, где кривизна не позволяет волосам лежать гладко. Это доказывает, что сферу нельзя сделать плоской, не разрывая её. На сфере (или любой другой поверхности, топологически эквивалентной сфере) невозможно гладко причесать "волосяное поле" без образования хотя бы одного вихря (или "залысины").
▪️ Факт 4: Наша Вселенная может быть конечной, но без границ.
Как и поверхность Земли конечна, но у неё нет края, так и наша 3D-Вселенная, согласно некоторым гипотезам, может быть аналогом 3-сферы — конечным объёмом, но без границ. Если бы вы полетели на космическом корабле «прямо», в итоге вы вернулись бы с обратной стороны.
Риманова геометрия — это не про заумные формулы. Это про новый язык, описывающий саму ткань реальности. От навигации GPS (где учитывается кривизна Земли) до квантовой гравитации и струнной теории — эта математика рисует карту мира, который куда причудливее и интереснее, чем нам кажется. Стол, на котором лежит ваша клавиатура или ноутбук, тоже обладает римановой геометрией. Просто его кривизна равна нулю. #математика #mathematics #animation #math #геометрия #geometry #gif
➰ Красота параметрических кривых
⭕️ Точки пересечения кругов на воде движутся по гиперболе
🕑 Экстремальная задача на смекалку
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍75❤52🔥24🤯6✍4❤🔥1🤔1💯1😇1
〽️ Непрерывная везде, но не дифференцируемая нигде: визуализация функции Вейерштрасса!
В давнюю эпоху математики во многом вдохновлялись природой. Когда Ньютон разрабатывал математический анализ, он в первую очередь вдохновлялся физическим миром: траекториями планет, колебаниями маятника, движением падающего фрукта. Такое мышление привело к возникновению геометрической интуиции относительно математических структур. Они должны были иметь такой же смысл, что и физический объект. В результате этого многие математики сосредоточились на изучении «непрерывных» функций.
Но в 1860-х появились слухи о странном существе — математической функции, противоречившей теореме Ампера. В Германии великий Бернхард Риман рассказывал своим студентам, что знает непрерывную функцию, не имеющую гладких частей, и для которой невозможно вычислить производную функции в любой точке. Риман не опубликовал доказательств, как и Шарль Селлерье из Женевского университета, который писал, что обнаружил что-то «очень важное и, как мне кажется, новое», однако спрятал свои работы в папку, ставшую достоянием общественности только после его смерти несколько десятков лет спустя. Однако если бы его заявлениям поверили, то это означало бы угрозу самым основам зарождавшегося математического анализа. Это существо угрожало разрушить счастливую дружбу между математической теорией и физическими наблюдениями, на которых она была основана. Матанализ всегда был языком планет и звёзд, но как может природа быть надёжным источником вдохновения, если найдутся математические функции, противоречащие основной её сути?
Чудовище окончательно родилось в 1872 году, когда Карл Вейерштрасс объявил, что нашёл функцию, являющуюся непрерывной, но не гладкой во всех точках. Он создал её, сложив вместе бесконечно длинный ряд функций косинуса:
Как функция она была уродливой и отвратительной. Было даже непонятно, как она будет выглядеть на графике. Но Вейерштрасса это не волновало. Его доказательство состояло не из форм, а из уравнений, и именно это делало его заявление таким мощным. Он не только создал чудовище, но и построил его на железной логике. Он взял собственное новое строгое определение производной и доказал, что для этой новой функции её вычислить невозможно. #математика #mathematics #animation #math #геометрия #geometry #gif #maths #видеоуроки #научные_фильмы #математический_анализ
💡 Physics.Math.Code // @physics_lib
В давнюю эпоху математики во многом вдохновлялись природой. Когда Ньютон разрабатывал математический анализ, он в первую очередь вдохновлялся физическим миром: траекториями планет, колебаниями маятника, движением падающего фрукта. Такое мышление привело к возникновению геометрической интуиции относительно математических структур. Они должны были иметь такой же смысл, что и физический объект. В результате этого многие математики сосредоточились на изучении «непрерывных» функций.
Но в 1860-х появились слухи о странном существе — математической функции, противоречившей теореме Ампера. В Германии великий Бернхард Риман рассказывал своим студентам, что знает непрерывную функцию, не имеющую гладких частей, и для которой невозможно вычислить производную функции в любой точке. Риман не опубликовал доказательств, как и Шарль Селлерье из Женевского университета, который писал, что обнаружил что-то «очень важное и, как мне кажется, новое», однако спрятал свои работы в папку, ставшую достоянием общественности только после его смерти несколько десятков лет спустя. Однако если бы его заявлениям поверили, то это означало бы угрозу самым основам зарождавшегося математического анализа. Это существо угрожало разрушить счастливую дружбу между математической теорией и физическими наблюдениями, на которых она была основана. Матанализ всегда был языком планет и звёзд, но как может природа быть надёжным источником вдохновения, если найдутся математические функции, противоречащие основной её сути?
Чудовище окончательно родилось в 1872 году, когда Карл Вейерштрасс объявил, что нашёл функцию, являющуюся непрерывной, но не гладкой во всех точках. Он создал её, сложив вместе бесконечно длинный ряд функций косинуса:
f(x) = cos(3x𝝅)/2 + cos(3²x𝝅)/2² + cos(3³x𝝅)/2³ + ...
Как функция она была уродливой и отвратительной. Было даже непонятно, как она будет выглядеть на графике. Но Вейерштрасса это не волновало. Его доказательство состояло не из форм, а из уравнений, и именно это делало его заявление таким мощным. Он не только создал чудовище, но и построил его на железной логике. Он взял собственное новое строгое определение производной и доказал, что для этой новой функции её вычислить невозможно. #математика #mathematics #animation #math #геометрия #geometry #gif #maths #видеоуроки #научные_фильмы #математический_анализ
💡 Physics.Math.Code // @physics_lib
👍56❤28🔥13🤯5⚡1
This media is not supported in your browser
VIEW IN TELEGRAM
➰ Красота параметрических кривых
Параметрическое представление — используемая в математическом анализе разновидность представления переменных, когда их зависимость выражается через дополнительную величину — параметр. Параметризация – метод представления кривой, поверхности или объекта в пространстве с помощью одной или нескольких переменных, называемых параметрами. Параметризация позволяет описывать траекторию объекта на кривой или поверхности, изменяя значение параметра. Это гибкий подход для изучения и анализа форм и движений объектов.
#математика #mathematics #animation #math #геометрия #geometry #gif
💡 Physics.Math.Code // @physics_lib
Параметрическое представление — используемая в математическом анализе разновидность представления переменных, когда их зависимость выражается через дополнительную величину — параметр. Параметризация – метод представления кривой, поверхности или объекта в пространстве с помощью одной или нескольких переменных, называемых параметрами. Параметризация позволяет описывать траекторию объекта на кривой или поверхности, изменяя значение параметра. Это гибкий подход для изучения и анализа форм и движений объектов.
#математика #mathematics #animation #math #геометрия #geometry #gif
💡 Physics.Math.Code // @physics_lib
🔥61❤31👍25✍4😱1