Physics.Math.Code
143K subscribers
5.2K photos
2.05K videos
5.81K files
4.45K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

№ 6045941532

Обратная связь: @physicist_i
Download Telegram
⚙️ Подборка очень интересных учебных видео о физике работе ДВС

1. Как устроен автомобильный двигатель. 3D анимация сборки автомобильного двигателя внутреннего сгорания.
2. Как работает двухтактный двигатель скутера
3. Двигатель в разрезе
4. Как работает паровой двигатель
5. Двигатель Стирлинга
6. Миниатюрный паровой двигатель
7. Мини-двигатель с AliExpress
8. Паровой или реактивный двигатель
9. Конструкция ДВС
10. Конструирование систем смазки и охлаждения ДВС
#физика #physics #механика #видеоуроки #научные_фильмы #ДВС #техника #опыты #лекции

🐝 «Nano Bee». Двигатель объемом 0,006 см³

Самый маленький четырехцилиндровый ДВС в мире

Звёздообразный или радиальный двигатель

⚙️ Сферически объемная роторная машина и ещё немного о необычных вариантах ДВС.

⚙️ Роторный двигатель

💥💨 Как работает двухтактный двигатель скутера

⚙️ Сравнение моторных масел

⚙️ Авиационный гироскоп


💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍50🔥1512❤‍🔥4🤩21
This media is not supported in your browser
VIEW IN TELEGRAM
⚙️ Основное отличие двухтактного и четырёхтактного двигателей внутреннего сгорания (ДВС) заключается в количестве тактов — движений поршня, за которые происходит рабочий цикл. В двухтактном двигателе рабочий цикл совершается за один оборот коленчатого вала, в четырёхтактном — за два оборота.

▪️Двухтактный двигатель. Принцип работы: один полный рабочий цикл (впуск, сжатие, рабочий ход и выпуск) происходит за два такта поршня.
— Отдельного газораспределительного механизма нет — роль впускных и выпускных клапанов выполняют отверстия в стенках цилиндра.
— Топливо обычно смешивается с маслом для смазки движущихся частей.
— Мощность двухтактного двигателя при одинаковых размерах цилиндра и частоте вращения вала теоретически в два раза больше четырёхтактного за счёт большего числа рабочих циклов. Однако неполное использование хода поршня для расширения и затраты части вырабатываемой мощности на продувку приводят к увеличению мощности только на 60–70%.

▪️Четырехтактный двигатель. Принцип работы: рабочий цикл состоит из четырёх тактов (ходов поршня).
— Для переключения полости цилиндра на впуск и на выхлоп используется отдельный газораспределительный механизм.
— Каждая фаза газообмена выполняется во время отдельного полуоборота коленчатого вала.
— Расход топлива ниже, так как топливная смесь полностью сгорает в цилиндре, и только потом, когда открывается выпускной клапан, отработанные газы выходят наружу.
— Экологичность — за счёт полного сгорания топливной смеси выделяется меньше вредных веществ в атмосферу.
#физика #physics #механика #видеоуроки #научные_фильмы #ДВС #техника #опыты #лекции

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8031🔥10❤‍🔥31
Media is too big
VIEW IN TELEGRAM
📝 Квадратура круга [1972] Центрнаучфильм

Детская научно – познавательная картина о древней математической загадке, названной «квадратура круга», о дальнейшей истории этой математической задачи. Квадратура круга — задача, заключающаяся в нахождении способа построения с помощью циркуля и линейки (без шкалы с делениями) квадрата, равновеликого по площади данному кругу. Наряду с трисекцией угла и удвоением куба, является одной из самых известных неразрешимых задач на построение с помощью циркуля и линейки.

Квадратура круга — задача, заключающаяся в нахождении способа построения с помощью циркуля и линейки квадрата, равновеликого по площади данному кругу.

О свойствах параболы

Наш канал с научно-техническими фильмами: 🎥 Учебные фильмы 🎞 @maths_lib

#физика #математика #моделирование #опыты #эксперименты #physics #видеоуроки #научные_фильмы #math #geometry

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4534❤‍🔥13🔥9🤩1🫡1
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 В древние времена среди металлов наибольшим спросом пользовалась медь. Её добывали из россыпей и плавили из руды. Зародилась медная металлургия в Анатолии, а потом постепенно стала распространяться по Евразии. Самым древним сплавом является мышьяковистая медь, которую получали из золотистого мышьяковистого минерала аурипигмента и смеси медной руды еще в IV тыс. до н.э. Во II тыс. до н.э. на смену мышьяковистой меди пришла оловянная бронза, которая на Кикладских островах (Греция) была известна уже в III тыс. до н.э. В гончарных мастерских происходила плавка металлов, в процессе которой удавалось обнаружить сплавы с разными температурами плавления и легкоплавкие из них использовались в качестве припоя.

Результаты археологических раскопок позволяют утверждать, что пайка как средство соединения металлов известна человеку не мене пяти тысячелетий. В 1927-1928 гг. археолог Леонард Вуллей при раскопках города Ура на Евфрате обнаружил гробницу царицы Шуб-ат с золотыми сосудами, ручки которых были припаяны серебряно-золотым сплавом. Всё это относится к 3500 году до н.э. #факты #пайка #металлы #железо #химия #научные_фильмы #gif

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍85🔥3320❤‍🔥5🆒42😱1😈1
This media is not supported in your browser
VIEW IN TELEGRAM
🌀 Различия в свойствах мягких припоев

Эти обозначения (# Tin или # Sn) не указывают напрямую на химический состав, а указывают на прочность на растяжение (tensile strength) припоя, выраженную в фунтах на квадратный дюйм (psi). Давайте разберем по порядку.

▪️ # в данном контексте означает "фунт" (pound). Цифра перед ним — это значение прочности на растяжение в тысячах фунтов на квадратный дюйм (ksi).

▪️ Примеры: 45# Sn означает припой с прочностью на растяжение 45 000 psi. или 99# Tin означает припой с прочностью на растяжение 99 000 psi.
Чем выше это число, тем прочнее соединение, полученное с помощью этого припоя.

▪️ Tin (англ.) или Sn (лат. Stannum) — это Олово. Указание "Tin" или "Sn" говорит о том, что этот припой содержит олово, но не говорит о его точном процентном содержании.

▪️ Эта система (ASTM B32) была распространена в США до того, как повсеместно стали использовать маркировку по химическому составу. Со временем для самых популярных марок сложились устойчивые соответствия.
30# Tin / Sn — Аналог ПОС-50 — Sn50Pb50 (50% олова, 50% свинца) — Радиомонтаж, общие работы. Низкая температура плавления.
45# Sn — Близок к ПОС-40 — Sn40Pb60 (40% олова, 60% свинца) — Более тугоплавкий, для неответственных соединений.
63# Sn — ПОС-63 (самый распространенный) — Sn63Pb37 (63% олова, 37% свинца) — Эвтектический припой. Идеален для электромонтажа: низкая Тпл, быстро переходит из жидкой в твердую фазу, мало склонен к образованию "холодных паек".
99# Tin — Sn95Sb5 (95% олова, 5% сурьмы) — Бессвинцовый припой. Высокая прочность, используется для пайки трубопроводов, радиаторов, в пищевой промышленности. Устойчив к ползучести и усталости.

Совет: Для современного электромонтажа (пайка электроники) золотым стандартом долгое время был 63# Sn (Sn63Pb37). Сейчас, с переходом на бессвинцовые технологии, чаще используются составы типа SAC305 (Sn96.5Ag3.0Cu0.5), которые маркируются уже по своему химическому составу. #факты #пайка #металлы #железо #химия #научные_фильмы #gif

🔥 В древние времена среди металлов наибольшим спросом пользовалась....

🔥 Сварка трением (фрикционная сварка)

Как сделать сварочный аппарат из карандаша и лезвия

Какой флюс для пайки самый лучший на сегодняшний день?

🪙 Разбираемся в пайке: Советы по соотношению олова и свинца и их влиянию

🔥 10 флюсов для пайки: сравнение, тесты и какой реально стоит использовать мастеру

🔥 Сварка под слоем флюса

Мартенсит

⛓️‍💥 Какие только технологии не применяли в СССР

⚡️ Большие токи в нескольких витках провода вызывают существенное магнитное поле.

💥 Лазерная сварка с разной формой луча

🔥 Spot-сварка

💥 Импульсная аргонодуговая сварка

💥 Электросварка и плавление электрода 💫

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥47👍31253🤩21🙈1
🕯🔍 Шлирен-метод (от нем. Schlieren — оптическая неоднородность) — способ обнаружения оптических неоднородностей в прозрачных, преломляющих средах, и выявления дефектов отражающих поверхностей.
Иногда его называют методом Тёплера — по имени автора, немецкого физика Августа Тёплера.

Шлирен-метод, разработанный в 1864 году Августом Тёплером, является развитием предложенного в 1857 году теневого метода Леона Фуко, разработанного для контроля геометрии при изготовлении сферических зеркал телескопов. Заключался метод Фуко в том, что проверяемое зеркало освещали точечным источником света. В центр кривизны сферы помещали непрозрачный экран с острой кромкой, затеняющий в формируемом изображении точечный источник, но не препятствующий лучам, рассеянным зеркалом из-за нарушения геометрии. Позднее такой экран стали называть ножом Фуко.

Если поверхность зеркала была строго сферичной, нож, перекрывая основной световой поток точечного источника, равномерно затенял формируемое зеркалом изображение. Если сфера имела дефекты — формируемое изображение, в зависимости от знака и степени ошибки радиуса локальной кривизны, имело светлые или тёмные области. Ориентируясь по такой разной освещённости, проводили дошлифовку зеркала.

Шлирен-метод получил особенно широкое распространение для визуализации различных процессов в воздушной среде. Это относится, например, к исследованиям распределения плотности воздушных потоков образующихся при обтекании моделей в аэродинамических трубах, то есть, в авиационной технике. Применяется, также в механике жидкости, баллистике, изучении распространения и смешивания газов и растворов, исследовании теплообмена за счет конвекции и т. п.
#physics #наука #физика #термодинамика #эксперименты #опыты #видеоуроки #научные_фильмы

💡 Physics.Math.Code // @physics_lib
🔥52👍2817❤‍🔥2🆒2👏1🤯1🤩1
📚 4 лекции по теме: Конечные поля. // Константин Шрамов / ЛШСМ 2024

⭕️ Поле в алгебре — множество, для элементов которого определены операции сложения, взятия противоположного значения, умножения и деления (кроме деления на ноль), причём свойства этих операций близки к свойствам обычных числовых операций. Простейшим полем является поле рациональных чисел (дробей). Элементы поля не обязательно являются числами, поэтому, несмотря на то, что названия операций поля взяты из арифметики, определения операций могут быть далеки от арифметических.

Поле — основной предмет изучения теории полей. Рациональные, вещественные, комплексные числа, рациональные функции и вычеты по модулю заданного простого числа образуют поля.

Поле — это множество, в котором можно складывать, умножать, вычитать и делить. Например, это можно делать с рациональными, действительными или комплексными числами. Помимо этого, такие операции можно производить и в некоторых конечных множествах — они и называются конечными полями. В начале курса я расскажу про самые простые свойства конечных полей: порядок конечного поля, единственность конечного поля данного порядка, структуру мультипликативной группы. Потом мы обсудим существование решений над конечными полями у полиномиальных уравнений, степень которых мала по сравнению с количеством переменных (теорема Шевалле-Варнинга), и обсудим применения конечных полей к вопросам, которые формулируются над полем комплексных чисел (например, существование неподвижных точек у инволюций аффинного пространства).

Шрамов Константин Александрович — доктор физико-математических наук.

#научные_фильмы #математика #algebra #math #алгебра

💡 Physics.Math.Code // @physics_lib
43👍20🔥7🤩7
💫 Ричард Фейнман: 7 лекций о связи математики и физики // Характер физических законов

Сборник лекций, прочитанных во время традиционных Мессенджеровских чтений в Кориеллском университете (в 1964 г.) известным физиком-теоретиком Р. Фейнманом. В этих лекциях, обращаясь к очень широкой аудитории, Фейнман рассказывает о самых фундаментальных законах природы, о том, как их открывают, каковы их особенности. Во второе издание перевода (1-е-«Мир», 1968 г.) внесены некоторые редакционные изменения.
▪️ Лекция 1. Пример физического закона - закон тяготения
▪️ Лекция 2. Связь математики с физикой
▪️ Лекция 3. Великие законы сохранения
▪️ Лекция 4. Симметрия физических законов
▪️ Лекция 5. Различие прошлого и будущего
▪️ Лекция 6. Вероятность и неопределенность - квантовомеханический взгляд на природу
▪️ Лекция 7. В поисках новых законов
#physics #физика #лекции #видеоуроки #научные_фильмы #наука

💡 Physics.Math.Code // @physics_lib
79👍37❤‍🔥6🔥41😍1
Media is too big
VIEW IN TELEGRAM
⚡️ Опыты Фарадея 🧲

29 августа 1831 года знаменитый английский физик Майкл Фарадей после 10 лет экспериментов открыл явление электромагнитной индукции. Это явление состоит в возникновении ЭДС индукции в замкнутом контуре при изменении магнитного потока через поверхность, ограниченную этим контуром.

Некоторые опыты Майкла Фарадея, которые имеют наибольшее значение для теории электромагнетизма:

🔸 Опыт с катушкой и магнитом. Взаимодействие движущегося магнита и катушки, намотанной из проводника, порождает электрический ток. При введении магнита в катушку в цепи возникает электрический ток одного направления (стрелка гальванометра отклоняется, например, вправо), при выведении магнита из катушки стрелка отклоняется в противоположную сторону.

🔸 Опыт с двумя катушками. По одной из них пропускали ток, к другой был подключён гальванометр. В момент начала или окончания пропускания тока по первой катушке стрелка гальванометра, подключённого ко второй, колебалась. Этот опыт показывал, что не только магнетизм можно превратить в электричество, но и электричество в магнетизм.

Видеопримеры по теме:

🔥 Индукционный нагрев

💫 «Гроб Мухаммеда»

🧲 Как работают трансформаторы?

⚡️ Основные физические понятия электродинамики (Леннаучфильм)

Взаимодействие зарядов. Электростатическая индукция

💫 Исследование электрических полей. Опыт по физике

⚡️ Уравнения Максвелла

⚙️ Электромагнитная подвеска 🧲

#видеоуроки #physics #физика #опыты #электродинамика #электричество #магнетизм #эксперименты #научные_фильмы

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍47🔥18146
〽️ Непрерывная везде, но не дифференцируемая нигде: визуализация функции Вейерштрасса!

В давнюю эпоху математики во многом вдохновлялись природой. Когда Ньютон разрабатывал математический анализ, он в первую очередь вдохновлялся физическим миром: траекториями планет, колебаниями маятника, движением падающего фрукта. Такое мышление привело к возникновению геометрической интуиции относительно математических структур. Они должны были иметь такой же смысл, что и физический объект. В результате этого многие математики сосредоточились на изучении «непрерывных» функций.

Но в 1860-х появились слухи о странном существе — математической функции, противоречившей теореме Ампера. В Германии великий Бернхард Риман рассказывал своим студентам, что знает непрерывную функцию, не имеющую гладких частей, и для которой невозможно вычислить производную функции в любой точке. Риман не опубликовал доказательств, как и Шарль Селлерье из Женевского университета, который писал, что обнаружил что-то «очень важное и, как мне кажется, новое», однако спрятал свои работы в папку, ставшую достоянием общественности только после его смерти несколько десятков лет спустя. Однако если бы его заявлениям поверили, то это означало бы угрозу самым основам зарождавшегося математического анализа. Это существо угрожало разрушить счастливую дружбу между математической теорией и физическими наблюдениями, на которых она была основана. Матанализ всегда был языком планет и звёзд, но как может природа быть надёжным источником вдохновения, если найдутся математические функции, противоречащие основной её сути?

Чудовище окончательно родилось в 1872 году, когда Карл Вейерштрасс объявил, что нашёл функцию, являющуюся непрерывной, но не гладкой во всех точках. Он создал её, сложив вместе бесконечно длинный ряд функций косинуса:

f(x) = cos(3x𝝅)/2 + cos(3²x𝝅)/2² + cos(3³x𝝅)/2³ + ...


Как функция она была уродливой и отвратительной. Было даже непонятно, как она будет выглядеть на графике. Но Вейерштрасса это не волновало. Его доказательство состояло не из форм, а из уравнений, и именно это делало его заявление таким мощным. Он не только создал чудовище, но и построил его на железной логике. Он взял собственное новое строгое определение производной и доказал, что для этой новой функции её вычислить невозможно. #математика #mathematics #animation #math #геометрия #geometry #gif #maths #видеоуроки #научные_фильмы #математический_анализ

💡 Physics.Math.Code // @physics_lib
👍5628🔥13🤯51
💥 Электроэрозионная обработка (аббр. ЭЭО) — обработка, заключающаяся в изменении формы, размеров, шероховатости и свойств поверхности электропроводящей заготовки под действием электрических разрядов, возникающих между заготовкой и электродом-инструментом. Электроэрозионная обработка основана на вырывании частиц материала с поверхности импульсом электрического разряда. Если задано напряжение (расстояние) между электродами, погруженными в рабочую жидкость (диэлектрик), то при их сближении (увеличении напряжения) происходит пробой рабочей жидкости — возникает электрический разряд, в канале которого образуется плазма с высокой температурой.

Поскольку длительность используемых в данном методе обработки электрических импульсов не превышает 0.01 с, выделяющееся тепло не успевает распространиться в глубь материала и даже незначительной энергии оказывается достаточно, чтобы разогреть, расплавить и испарить небольшое количество вещества. Кроме того, давление, развиваемое частицами плазмы при ударе об электрод, способствует выбросу (эрозии) не только расплавленного, но и просто разогретого вещества. Поскольку электрический пробой, как правило, происходит по кратчайшему пути, то прежде всего разрушаются наиболее близко расположенные участки электродов. Таким образом, при приближении одного электрода заданной формы (инструмента) к другому (заготовке) поверхность последнего примет форму поверхности первого. Производительность процесса, качество получаемой поверхности в основном определяются параметрами электрических импульсов (их длительностью, частотой следования, энергией в импульсе). Электроэрозионный метод обработки объединил электроискровой и электроимпульсный методы.

Первые сообщения об электрических разрядах и эффектах, их сопровождающих, делали Роберт Бойль (1694), Бенджамин Франклин (1751), Джозеф Пристли (1766) Лихтенберг Георг Кристиан (1777). В 1938 году советский инженер Л. А. Юткин показал, что серия электроискровых разрядов порождает формообразующие гидравлические удары, что положило начало электроискровой штамповке металлов, и стало следующим, после электродуговой сварки, шагом по развитию технологических методов формообразования электрическими разрядами. В 1941 году учёным Б. Р. Лазаренко и Н. Е. Лазаренко из МГУ было поручено найти методы увеличения срока службы прерывателей-распределителей зажигания автомобильных двигателей. В результате исследований и экспериментов с вольфрамом они обратили внимание на направленное разрушение электрическими разрядами, создаваемыми импульсами определённой формы тока, что послужило толчком к созданию в 1943 году нового технологического процесса обработки заготовок с помощью электроэрозии. #physics #техника #электродинамика #физика #видеоуроки #производство #научные_фильмы

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍47🔥23184🥰2
⚡️ Электродинамика в опытах: Лестница Иакова — электрическая дуга, которая поднимается вверх

Что нам понадобится?
▪️Источник высокого напряжения (например, трансформатор на 10-15 кВ).
▪️Два длинных металлических электрода (проволока или полосы), расположенные в форме буквы V.
▪️Негорючая подставка.

🔥 Что происходит? Физика процесса: тепло и воздух
Мы включаем питание, и между нижними концами электродов, где расстояние минимальное, возникает мощная электрическая дуга. Воздух в этом промежутке ионизируется и превращается в проводящую плазму. Дуга ярко светит и сильно нагревается.

1. Нагрев и конвекция: Мощная дуга нагревает воздух вокруг себя до огромных температур. Горячий воздух, как известно, становится менее плотным и поднимается вверх благодаря силе конвекции. Этот восходящий поток увлекает за собой и столб плазменной дуги.

2. Растягивание и обрыв: Дуга, поднимаясь, оказывается между всё более удалёнными друг от друга электродами. В какой-то момент напряжение нашего источника уже не может поддерживать дугу такой длины. Она становится тоньше, нестабильнее и в верхней точке обрывается.

3. Цикл повторяется: Как только дуга гаснет, напряжение снова прикладывается к самым близким точкам электродов — а это, как вы помните, их нижние части. Воздух снова пробивается, возникает новая дуга, и весь цикл повторяется. Со стороны это выглядит так, будто дуга бесконечно «шагает» снизу вверх.

Лестница Иакова — это не одна и та же дуга, которая поднимается. Это последовательность быстрых пробоев в нижней точке и последующего подъема и обрыва. Мы видим непрерывный процесс из-за инерции нашего зрения. Название отсылает к библейскому сюжету, где Иаков увидел во сне лестницу до небес, по которой поднимаются и спускаются ангелы. Поднимающиеся языки плазмы очень похожи на эту мистическую лестницу.

⚠️ Этот эксперимент очень опасен
🔸 Высокое напряжение может убить даже без прямого прикосновения.
🔸Интенсивное ультрафиолетовое излучение от дуги вредит глазам и коже.
🔸Образуется озон (O₃) и оксиды азота — ядовитые газы.
🔸Риск пожара от раскалённой плазмы и искр.

#physics #эксперименты #электродинамика #физика #видеоуроки #опыты #научные_фильмы #плазма

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥38👍17122🥰1😱1
This media is not supported in your browser
VIEW IN TELEGRAM
🌪 Теория относительности — это комплекс из двух теорий, которые описывают свойства пространства, времени и гравитации. Они были предложены Альбертом Эйнштейном в начале XX века. Смотреть полный фильм: 🕰 Что такое теория относительности [20 мин фильм]

▪️ Специальная теория относительности. Описывает поведение объектов, которые движутся с постоянной скоростью. Теория утверждает, что время и пространство не являются абсолютно фиксированными для всех наблюдателей — они могут изменяться в зависимости от скорости объекта. Некоторые принципы специальной теории относительности:
— Принцип относительности — законы физики одинаковы для всех наблюдателей, независимо от того, находятся ли они в покое или движутся с постоянной скоростью относительно других объектов.
— Постоянство скорости света — скорость света всегда одинаковая (примерно 300 000 км/с) и не зависит от того, как быстро движется источник света или наблюдатель.

▫️ Общая теория относительности. Расширяет идеи специальной теории относительности и объясняет гравитацию. Теория утверждает, что гравитация — это не сила, а искривление пространства-времени, вызванное массой и энергией объектов. Некоторые принципы общей теории относительности:
— Эквивалентность гравитации и ускорения — невозможно отличить действие гравитации от ускоренного движения.
— Гравитационное замедление времени — часы идут медленнее вблизи массивных объектов, например, рядом с чёрной дырой время почти останавливается. #физика #теория_относительности #оптика #опыты #эксперименты #physics #видеоуроки #научные_фильмы #свет #волны #СТО #ОТО #science

🖥 Против теории относительности и Эйнштейна // Алексей Семихатов, Владимир Сурдин / Вселенная Плюс

👨🏻‍💻 Видеолекции по теории поля и СТО [Часть 1]

👨🏻‍💻 Видеолекции по теории поля и СТО [Часть 2]

📚 3 книги по теории относительности

☀️ Физика света / The Physics of Light [2014]

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
36👍318🔥5❤‍🔥3🤯3😭1🙈1
Media is too big
VIEW IN TELEGRAM
😠 Втягивание жидкого диэлектрика в конденсатор ⚡️

Опыт, который демонстрирует, как электрическое поле взаимодействует с диэлектриками. На видео пластины плоского конденсатора опущены в воду, подключаем к ним высокое напряжение, и... вода сама втягивается в зазор! 💧
Кажется, будто вода «прилипает» к пластинам. Но на самом деле её вталкивает туда сила, порожденная электрическим полем. Давайте разберемся почему.

▪️ 1. Вода – не просто проводник
Хотя вода с примесями проводит ток, в этом опыте ключевую роль играет ее диэлектрическая природа. Молекула воды (H₂O) – это диполь. У нее есть положительный полюс (со стороны атомов водорода) и отрицательный (со стороны атома кислорода). В обычном состоянии эти диполи хаотично ориентированы.

▪️ 2. Сила поля – главный мотиватор
Когда мы включаем напряжение, между пластинами конденсатора создается неоднородное электрическое поле: у краев пластин оно слабее, а в зазоре – значительно сильнее.

▪️ 3. Что делают молекулы-диполи?
Под действием поля диполи воды начинают ориентироваться – поворачиваются вдоль силовых линий: «плюсом» к отрицательной пластине, «минусом» – к положительной. Это явление называется поляризацией.

Физика: Сила, действующая на концы диполя, не просто его поворачивает. Поскольку поле неоднородное (сильнее внутри конденсатора и слабее снаружи), сила, притягивающая «+» конец диполя к «-» пластине, будет чуть больше, чем сила, отталкивающая его «-» конец от той же пластины. В результате на каждую поляризованную молекулу воды действует результирующая сила, которая втягивает ее из области слабого поля в область сильного – то есть, прямо в зазор между пластинами! Диэлектрик (в нашем случае – вода) всегда стремится переместиться туда, где напряженность электрического поля максимальна. Именно эта сила и заставляет воду подниматься между пластинами, преодолевая силу тяжести и силы поверхностного натяжения.

Такой эффект наблюдается не только с водой, но и с другими жидкими диэлектриками (например, с керосином или маслом), и лежит в основе работы многих электростатических устройств. #physics #эксперименты #электродинамика #физика #видеоуроки #опыты #научные_фильмы #лекции

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍27🔥1381