Если в стаканы поместить электроды и подать на них высокое напряжение, то деионизированная вода образует стабильный цилиндрический мост между двумя стаканами. Толщина мостика зависит от величины напряжения и, соответственно, проходящего тока.
Когда между двумя стаканами с водой создаётся разность потенциалов около 10 кВ, между стаканами может возникнуть тонкий водяной мостик. Силы поверхностного натяжения удерживают его на весу, а силы электрического давления не дают мостику распасться на отдельные капли. #gif #опыты #видеоуроки #физика #научные_фильмы #physics
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍54🔥23❤21⚡5🤔2
Media is too big
VIEW IN TELEGRAM
Это интервью было снято у Ричарда Фейнмана дома и показано на канале BBC2, в виде нескольких коротких серий, в период с 8 июля по 12 августа 1983.
0:00:50 Колеблющиеся атомы
0:07:18 Огонь
0:12:08 Резиновые жгуты
0:14:54 Магниты
0:22:29 Электричество
0:32:06 Загадки о зеркале и поезде
0:37:46 Чудо зрения
0:43:40 Большие числа
0:55:01 Способы думать
#physics #math #математика #научные_фильмы #видеоуроки #физика #science #наука
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥71❤30👍16🤩4⚡1🌚1🗿1
This media is not supported in your browser
VIEW IN TELEGRAM
Основная причина эффекта — это практически мгновенное испарение нижней части капли при контакте с раскалённой поверхностью. В этот момент происходит образование прослойки пара, которая как бы «подвешивает» неиспарившуюся часть капли над раскалённой поверхностью, не давая жидкости вступить с ней в прямой контакт.
В повседневной жизни явление можно наблюдать при приготовлении пищи: для оценки температуры сковороды на неё брызгают водой — если температура достигла или уже выше точки Лейденфроста, вода соберётся в капли, которые будут «скользить» по поверхности металла и испаряться дольше, чем если бы это происходило в сковороде, нагретой выше точки кипения воды, но ниже точки Лейденфроста. #физика #термодинамика #мкт #опыты #эксперименты #physics #видеоуроки #научные_фильмы
💧 Капля воды падающая на горячий металл 💥в Slow motion
💧 Эффект Лейденфроста
🚀 Что будет, если добавить жидкий газ в бутылку с водой
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍80🔥36❤31🤩8
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
1. Как устроен автомобильный двигатель. 3D анимация сборки автомобильного двигателя внутреннего сгорания.
2. Как работает двухтактный двигатель скутера
3. Двигатель в разрезе
4. Как работает паровой двигатель
5. Двигатель Стирлинга
6. Миниатюрный паровой двигатель
7. Мини-двигатель с AliExpress
8. Паровой или реактивный двигатель
9. Конструкция ДВС
10. Конструирование систем смазки и охлаждения ДВС #физика #physics #механика #видеоуроки #научные_фильмы #ДВС #техника #опыты #лекции
🐝 «Nano Bee». Двигатель объемом 0,006 см³
Самый маленький четырехцилиндровый ДВС в мире
⚙️ Авиационный гироскоп
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍50🔥15❤12❤🔥4🤩2⚡1
This media is not supported in your browser
VIEW IN TELEGRAM
▪️Двухтактный двигатель. Принцип работы: один полный рабочий цикл (впуск, сжатие, рабочий ход и выпуск) происходит за два такта поршня.
— Отдельного газораспределительного механизма нет — роль впускных и выпускных клапанов выполняют отверстия в стенках цилиндра.
— Топливо обычно смешивается с маслом для смазки движущихся частей.
— Мощность двухтактного двигателя при одинаковых размерах цилиндра и частоте вращения вала теоретически в два раза больше четырёхтактного за счёт большего числа рабочих циклов. Однако неполное использование хода поршня для расширения и затраты части вырабатываемой мощности на продувку приводят к увеличению мощности только на 60–70%.
▪️Четырехтактный двигатель. Принцип работы: рабочий цикл состоит из четырёх тактов (ходов поршня).
— Для переключения полости цилиндра на впуск и на выхлоп используется отдельный газораспределительный механизм.
— Каждая фаза газообмена выполняется во время отдельного полуоборота коленчатого вала.
— Расход топлива ниже, так как топливная смесь полностью сгорает в цилиндре, и только потом, когда открывается выпускной клапан, отработанные газы выходят наружу.
— Экологичность — за счёт полного сгорания топливной смеси выделяется меньше вредных веществ в атмосферу.
#физика #physics #механика #видеоуроки #научные_фильмы #ДВС #техника #опыты #лекции
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍80❤31🔥10❤🔥3⚡1
Media is too big
VIEW IN TELEGRAM
Детская научно – познавательная картина о древней математической загадке, названной «квадратура круга», о дальнейшей истории этой математической задачи. Квадратура круга — задача, заключающаяся в нахождении способа построения с помощью циркуля и линейки (без шкалы с делениями) квадрата, равновеликого по площади данному кругу. Наряду с трисекцией угла и удвоением куба, является одной из самых известных неразрешимых задач на построение с помощью циркуля и линейки.
Квадратура круга — задача, заключающаяся в нахождении способа построения с помощью циркуля и линейки квадрата, равновеликого по площади данному кругу.
➰ О свойствах параболы ➿
Наш канал с научно-техническими фильмами: 🎥 Учебные фильмы 🎞 @maths_lib
#физика #математика #моделирование #опыты #эксперименты #physics #видеоуроки #научные_фильмы #math #geometry
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍45❤34❤🔥13🔥9🤩1🫡1
This media is not supported in your browser
VIEW IN TELEGRAM
Результаты археологических раскопок позволяют утверждать, что пайка как средство соединения металлов известна человеку не мене пяти тысячелетий. В 1927-1928 гг. археолог Леонард Вуллей при раскопках города Ура на Евфрате обнаружил гробницу царицы Шуб-ат с золотыми сосудами, ручки которых были припаяны серебряно-золотым сплавом. Всё это относится к 3500 году до н.э. #факты #пайка #металлы #железо #химия #научные_фильмы #gif
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍85🔥33❤20❤🔥5🆒4⚡2😱1😈1
This media is not supported in your browser
VIEW IN TELEGRAM
🌀 Различия в свойствах мягких припоев
Эти обозначения (# Tin или # Sn) не указывают напрямую на химический состав, а указывают на прочность на растяжение (tensile strength) припоя, выраженную в фунтах на квадратный дюйм (psi). Давайте разберем по порядку.
▪️ # в данном контексте означает "фунт" (pound). Цифра перед ним — это значение прочности на растяжение в тысячах фунтов на квадратный дюйм (ksi).
▪️ Примеры: 45# Sn означает припой с прочностью на растяжение 45 000 psi. или 99# Tin означает припой с прочностью на растяжение 99 000 psi.
Чем выше это число, тем прочнее соединение, полученное с помощью этого припоя.
▪️ Tin (англ.) или Sn (лат. Stannum) — это Олово. Указание "Tin" или "Sn" говорит о том, что этот припой содержит олово, но не говорит о его точном процентном содержании.
▪️ Эта система (ASTM B32) была распространена в США до того, как повсеместно стали использовать маркировку по химическому составу. Со временем для самых популярных марок сложились устойчивые соответствия.
➰ 30# Tin / Sn — Аналог ПОС-50 — Sn50Pb50 (50% олова, 50% свинца) — Радиомонтаж, общие работы. Низкая температура плавления.
➰ 45# Sn — Близок к ПОС-40 — Sn40Pb60 (40% олова, 60% свинца) — Более тугоплавкий, для неответственных соединений.
➰ 63# Sn — ПОС-63 (самый распространенный) — Sn63Pb37 (63% олова, 37% свинца) — Эвтектический припой. Идеален для электромонтажа: низкая Тпл, быстро переходит из жидкой в твердую фазу, мало склонен к образованию "холодных паек".
➰ 99# Tin — Sn95Sb5 (95% олова, 5% сурьмы) — Бессвинцовый припой. Высокая прочность, используется для пайки трубопроводов, радиаторов, в пищевой промышленности. Устойчив к ползучести и усталости.
Совет: Для современного электромонтажа (пайка электроники) золотым стандартом долгое время был 63# Sn (Sn63Pb37). Сейчас, с переходом на бессвинцовые технологии, чаще используются составы типа SAC305 (Sn96.5Ag3.0Cu0.5), которые маркируются уже по своему химическому составу. #факты #пайка #металлы #железо #химия #научные_фильмы #gif
🔥 В древние времена среди металлов наибольшим спросом пользовалась....
🔥 Сварка трением (фрикционная сварка)
✨ Как сделать сварочный аппарат из карандаша и лезвия
Какой флюс для пайки самый лучший на сегодняшний день?
🪙 Разбираемся в пайке: Советы по соотношению олова и свинца и их влиянию
🔥 10 флюсов для пайки: сравнение, тесты и какой реально стоит использовать мастеру
🔥 Сварка под слоем флюса
✨ Мартенсит
⛓️💥 Какие только технологии не применяли в СССР
⚡️ Большие токи в нескольких витках провода вызывают существенное магнитное поле.
💥 Лазерная сварка с разной формой луча
🔥 Spot-сварка
💥 Импульсная аргонодуговая сварка
💥 Электросварка и плавление электрода 💫
💡 Physics.Math.Code // @physics_lib
Эти обозначения (# Tin или # Sn) не указывают напрямую на химический состав, а указывают на прочность на растяжение (tensile strength) припоя, выраженную в фунтах на квадратный дюйм (psi). Давайте разберем по порядку.
▪️ # в данном контексте означает "фунт" (pound). Цифра перед ним — это значение прочности на растяжение в тысячах фунтов на квадратный дюйм (ksi).
▪️ Примеры: 45# Sn означает припой с прочностью на растяжение 45 000 psi. или 99# Tin означает припой с прочностью на растяжение 99 000 psi.
Чем выше это число, тем прочнее соединение, полученное с помощью этого припоя.
▪️ Tin (англ.) или Sn (лат. Stannum) — это Олово. Указание "Tin" или "Sn" говорит о том, что этот припой содержит олово, но не говорит о его точном процентном содержании.
▪️ Эта система (ASTM B32) была распространена в США до того, как повсеместно стали использовать маркировку по химическому составу. Со временем для самых популярных марок сложились устойчивые соответствия.
➰ 30# Tin / Sn — Аналог ПОС-50 — Sn50Pb50 (50% олова, 50% свинца) — Радиомонтаж, общие работы. Низкая температура плавления.
➰ 45# Sn — Близок к ПОС-40 — Sn40Pb60 (40% олова, 60% свинца) — Более тугоплавкий, для неответственных соединений.
➰ 63# Sn — ПОС-63 (самый распространенный) — Sn63Pb37 (63% олова, 37% свинца) — Эвтектический припой. Идеален для электромонтажа: низкая Тпл, быстро переходит из жидкой в твердую фазу, мало склонен к образованию "холодных паек".
➰ 99# Tin — Sn95Sb5 (95% олова, 5% сурьмы) — Бессвинцовый припой. Высокая прочность, используется для пайки трубопроводов, радиаторов, в пищевой промышленности. Устойчив к ползучести и усталости.
Совет: Для современного электромонтажа (пайка электроники) золотым стандартом долгое время был 63# Sn (Sn63Pb37). Сейчас, с переходом на бессвинцовые технологии, чаще используются составы типа SAC305 (Sn96.5Ag3.0Cu0.5), которые маркируются уже по своему химическому составу. #факты #пайка #металлы #железо #химия #научные_фильмы #gif
✨ Как сделать сварочный аппарат из карандаша и лезвия
Какой флюс для пайки самый лучший на сегодняшний день?
🪙 Разбираемся в пайке: Советы по соотношению олова и свинца и их влиянию
🔥 10 флюсов для пайки: сравнение, тесты и какой реально стоит использовать мастеру
✨ Мартенсит
⛓️💥 Какие только технологии не применяли в СССР
🔥 Spot-сварка
💥 Импульсная аргонодуговая сварка
💥 Электросварка и плавление электрода 💫
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥47👍30❤25✍3🤩2⚡1🙈1
🕯🔍 Шлирен-метод (от нем. Schlieren — оптическая неоднородность) — способ обнаружения оптических неоднородностей в прозрачных, преломляющих средах, и выявления дефектов отражающих поверхностей.
Иногда его называют методом Тёплера — по имени автора, немецкого физика Августа Тёплера.
Шлирен-метод, разработанный в 1864 году Августом Тёплером, является развитием предложенного в 1857 году теневого метода Леона Фуко, разработанного для контроля геометрии при изготовлении сферических зеркал телескопов. Заключался метод Фуко в том, что проверяемое зеркало освещали точечным источником света. В центр кривизны сферы помещали непрозрачный экран с острой кромкой, затеняющий в формируемом изображении точечный источник, но не препятствующий лучам, рассеянным зеркалом из-за нарушения геометрии. Позднее такой экран стали называть ножом Фуко.
Если поверхность зеркала была строго сферичной, нож, перекрывая основной световой поток точечного источника, равномерно затенял формируемое зеркалом изображение. Если сфера имела дефекты — формируемое изображение, в зависимости от знака и степени ошибки радиуса локальной кривизны, имело светлые или тёмные области. Ориентируясь по такой разной освещённости, проводили дошлифовку зеркала.
Шлирен-метод получил особенно широкое распространение для визуализации различных процессов в воздушной среде. Это относится, например, к исследованиям распределения плотности воздушных потоков образующихся при обтекании моделей в аэродинамических трубах, то есть, в авиационной технике. Применяется, также в механике жидкости, баллистике, изучении распространения и смешивания газов и растворов, исследовании теплообмена за счет конвекции и т. п.
#physics #наука #физика #термодинамика #эксперименты #опыты #видеоуроки #научные_фильмы
💡 Physics.Math.Code // @physics_lib
Иногда его называют методом Тёплера — по имени автора, немецкого физика Августа Тёплера.
Шлирен-метод, разработанный в 1864 году Августом Тёплером, является развитием предложенного в 1857 году теневого метода Леона Фуко, разработанного для контроля геометрии при изготовлении сферических зеркал телескопов. Заключался метод Фуко в том, что проверяемое зеркало освещали точечным источником света. В центр кривизны сферы помещали непрозрачный экран с острой кромкой, затеняющий в формируемом изображении точечный источник, но не препятствующий лучам, рассеянным зеркалом из-за нарушения геометрии. Позднее такой экран стали называть ножом Фуко.
Если поверхность зеркала была строго сферичной, нож, перекрывая основной световой поток точечного источника, равномерно затенял формируемое зеркалом изображение. Если сфера имела дефекты — формируемое изображение, в зависимости от знака и степени ошибки радиуса локальной кривизны, имело светлые или тёмные области. Ориентируясь по такой разной освещённости, проводили дошлифовку зеркала.
Шлирен-метод получил особенно широкое распространение для визуализации различных процессов в воздушной среде. Это относится, например, к исследованиям распределения плотности воздушных потоков образующихся при обтекании моделей в аэродинамических трубах, то есть, в авиационной технике. Применяется, также в механике жидкости, баллистике, изучении распространения и смешивания газов и растворов, исследовании теплообмена за счет конвекции и т. п.
#physics #наука #физика #термодинамика #эксперименты #опыты #видеоуроки #научные_фильмы
💡 Physics.Math.Code // @physics_lib
🔥51👍28❤17❤🔥2🆒2👏1🤯1🤩1
📚 4 лекции по теме: Конечные поля. // Константин Шрамов / ЛШСМ 2024
⭕️ Поле в алгебре — множество, для элементов которого определены операции сложения, взятия противоположного значения, умножения и деления (кроме деления на ноль), причём свойства этих операций близки к свойствам обычных числовых операций. Простейшим полем является поле рациональных чисел (дробей). Элементы поля не обязательно являются числами, поэтому, несмотря на то, что названия операций поля взяты из арифметики, определения операций могут быть далеки от арифметических.
Поле — основной предмет изучения теории полей. Рациональные, вещественные, комплексные числа, рациональные функции и вычеты по модулю заданного простого числа образуют поля.
Поле — это множество, в котором можно складывать, умножать, вычитать и делить. Например, это можно делать с рациональными, действительными или комплексными числами. Помимо этого, такие операции можно производить и в некоторых конечных множествах — они и называются конечными полями. В начале курса я расскажу про самые простые свойства конечных полей: порядок конечного поля, единственность конечного поля данного порядка, структуру мультипликативной группы. Потом мы обсудим существование решений над конечными полями у полиномиальных уравнений, степень которых мала по сравнению с количеством переменных (теорема Шевалле-Варнинга), и обсудим применения конечных полей к вопросам, которые формулируются над полем комплексных чисел (например, существование неподвижных точек у инволюций аффинного пространства).
Шрамов Константин Александрович — доктор физико-математических наук.
#научные_фильмы #математика #algebra #math #алгебра
💡 Physics.Math.Code // @physics_lib
⭕️ Поле в алгебре — множество, для элементов которого определены операции сложения, взятия противоположного значения, умножения и деления (кроме деления на ноль), причём свойства этих операций близки к свойствам обычных числовых операций. Простейшим полем является поле рациональных чисел (дробей). Элементы поля не обязательно являются числами, поэтому, несмотря на то, что названия операций поля взяты из арифметики, определения операций могут быть далеки от арифметических.
Поле — основной предмет изучения теории полей. Рациональные, вещественные, комплексные числа, рациональные функции и вычеты по модулю заданного простого числа образуют поля.
Поле — это множество, в котором можно складывать, умножать, вычитать и делить. Например, это можно делать с рациональными, действительными или комплексными числами. Помимо этого, такие операции можно производить и в некоторых конечных множествах — они и называются конечными полями. В начале курса я расскажу про самые простые свойства конечных полей: порядок конечного поля, единственность конечного поля данного порядка, структуру мультипликативной группы. Потом мы обсудим существование решений над конечными полями у полиномиальных уравнений, степень которых мала по сравнению с количеством переменных (теорема Шевалле-Варнинга), и обсудим применения конечных полей к вопросам, которые формулируются над полем комплексных чисел (например, существование неподвижных точек у инволюций аффинного пространства).
Шрамов Константин Александрович — доктор физико-математических наук.
#научные_фильмы #математика #algebra #math #алгебра
💡 Physics.Math.Code // @physics_lib
❤43👍20🔥7🤩7
💫 Ричард Фейнман: 7 лекций о связи математики и физики // Характер физических законов
Сборник лекций, прочитанных во время традиционных Мессенджеровских чтений в Кориеллском университете (в 1964 г.) известным физиком-теоретиком Р. Фейнманом. В этих лекциях, обращаясь к очень широкой аудитории, Фейнман рассказывает о самых фундаментальных законах природы, о том, как их открывают, каковы их особенности. Во второе издание перевода (1-е-«Мир», 1968 г.) внесены некоторые редакционные изменения.
▪️ Лекция 1. Пример физического закона - закон тяготения
▪️ Лекция 2. Связь математики с физикой
▪️ Лекция 3. Великие законы сохранения
▪️ Лекция 4. Симметрия физических законов
▪️ Лекция 5. Различие прошлого и будущего
▪️ Лекция 6. Вероятность и неопределенность - квантовомеханический взгляд на природу
▪️ Лекция 7. В поисках новых законов
#physics #физика #лекции #видеоуроки #научные_фильмы #наука
💡 Physics.Math.Code // @physics_lib
Сборник лекций, прочитанных во время традиционных Мессенджеровских чтений в Кориеллском университете (в 1964 г.) известным физиком-теоретиком Р. Фейнманом. В этих лекциях, обращаясь к очень широкой аудитории, Фейнман рассказывает о самых фундаментальных законах природы, о том, как их открывают, каковы их особенности. Во второе издание перевода (1-е-«Мир», 1968 г.) внесены некоторые редакционные изменения.
▪️ Лекция 1. Пример физического закона - закон тяготения
▪️ Лекция 2. Связь математики с физикой
▪️ Лекция 3. Великие законы сохранения
▪️ Лекция 4. Симметрия физических законов
▪️ Лекция 5. Различие прошлого и будущего
▪️ Лекция 6. Вероятность и неопределенность - квантовомеханический взгляд на природу
▪️ Лекция 7. В поисках новых законов
#physics #физика #лекции #видеоуроки #научные_фильмы #наука
💡 Physics.Math.Code // @physics_lib
❤78👍35❤🔥6🔥4⚡1😍1
Media is too big
VIEW IN TELEGRAM
29 августа 1831 года знаменитый английский физик Майкл Фарадей после 10 лет экспериментов открыл явление электромагнитной индукции. Это явление состоит в возникновении ЭДС индукции в замкнутом контуре при изменении магнитного потока через поверхность, ограниченную этим контуром.
Некоторые опыты Майкла Фарадея, которые имеют наибольшее значение для теории электромагнетизма:
🔸 Опыт с катушкой и магнитом. Взаимодействие движущегося магнита и катушки, намотанной из проводника, порождает электрический ток. При введении магнита в катушку в цепи возникает электрический ток одного направления (стрелка гальванометра отклоняется, например, вправо), при выведении магнита из катушки стрелка отклоняется в противоположную сторону.
🔸 Опыт с двумя катушками. По одной из них пропускали ток, к другой был подключён гальванометр. В момент начала или окончания пропускания тока по первой катушке стрелка гальванометра, подключённого ко второй, колебалась. Этот опыт показывал, что не только магнетизм можно превратить в электричество, но и электричество в магнетизм.
Видеопримеры по теме:
🔥 Индукционный нагрев
💫 «Гроб Мухаммеда»
🧲 Как работают трансформаторы?
⚡️ Основные физические понятия электродинамики (Леннаучфильм)
✨ Взаимодействие зарядов. Электростатическая индукция
💫 Исследование электрических полей. Опыт по физике
⚡️ Уравнения Максвелла ✨
⚙️ Электромагнитная подвеска 🧲
#видеоуроки #physics #физика #опыты #электродинамика #электричество #магнетизм #эксперименты #научные_фильмы
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍43🔥18❤14⚡6
〽️ Непрерывная везде, но не дифференцируемая нигде: визуализация функции Вейерштрасса!
В давнюю эпоху математики во многом вдохновлялись природой. Когда Ньютон разрабатывал математический анализ, он в первую очередь вдохновлялся физическим миром: траекториями планет, колебаниями маятника, движением падающего фрукта. Такое мышление привело к возникновению геометрической интуиции относительно математических структур. Они должны были иметь такой же смысл, что и физический объект. В результате этого многие математики сосредоточились на изучении «непрерывных» функций.
Но в 1860-х появились слухи о странном существе — математической функции, противоречившей теореме Ампера. В Германии великий Бернхард Риман рассказывал своим студентам, что знает непрерывную функцию, не имеющую гладких частей, и для которой невозможно вычислить производную функции в любой точке. Риман не опубликовал доказательств, как и Шарль Селлерье из Женевского университета, который писал, что обнаружил что-то «очень важное и, как мне кажется, новое», однако спрятал свои работы в папку, ставшую достоянием общественности только после его смерти несколько десятков лет спустя. Однако если бы его заявлениям поверили, то это означало бы угрозу самым основам зарождавшегося математического анализа. Это существо угрожало разрушить счастливую дружбу между математической теорией и физическими наблюдениями, на которых она была основана. Матанализ всегда был языком планет и звёзд, но как может природа быть надёжным источником вдохновения, если найдутся математические функции, противоречащие основной её сути?
Чудовище окончательно родилось в 1872 году, когда Карл Вейерштрасс объявил, что нашёл функцию, являющуюся непрерывной, но не гладкой во всех точках. Он создал её, сложив вместе бесконечно длинный ряд функций косинуса:
Как функция она была уродливой и отвратительной. Было даже непонятно, как она будет выглядеть на графике. Но Вейерштрасса это не волновало. Его доказательство состояло не из форм, а из уравнений, и именно это делало его заявление таким мощным. Он не только создал чудовище, но и построил его на железной логике. Он взял собственное новое строгое определение производной и доказал, что для этой новой функции её вычислить невозможно. #математика #mathematics #animation #math #геометрия #geometry #gif #maths #видеоуроки #научные_фильмы #математический_анализ
💡 Physics.Math.Code // @physics_lib
В давнюю эпоху математики во многом вдохновлялись природой. Когда Ньютон разрабатывал математический анализ, он в первую очередь вдохновлялся физическим миром: траекториями планет, колебаниями маятника, движением падающего фрукта. Такое мышление привело к возникновению геометрической интуиции относительно математических структур. Они должны были иметь такой же смысл, что и физический объект. В результате этого многие математики сосредоточились на изучении «непрерывных» функций.
Но в 1860-х появились слухи о странном существе — математической функции, противоречившей теореме Ампера. В Германии великий Бернхард Риман рассказывал своим студентам, что знает непрерывную функцию, не имеющую гладких частей, и для которой невозможно вычислить производную функции в любой точке. Риман не опубликовал доказательств, как и Шарль Селлерье из Женевского университета, который писал, что обнаружил что-то «очень важное и, как мне кажется, новое», однако спрятал свои работы в папку, ставшую достоянием общественности только после его смерти несколько десятков лет спустя. Однако если бы его заявлениям поверили, то это означало бы угрозу самым основам зарождавшегося математического анализа. Это существо угрожало разрушить счастливую дружбу между математической теорией и физическими наблюдениями, на которых она была основана. Матанализ всегда был языком планет и звёзд, но как может природа быть надёжным источником вдохновения, если найдутся математические функции, противоречащие основной её сути?
Чудовище окончательно родилось в 1872 году, когда Карл Вейерштрасс объявил, что нашёл функцию, являющуюся непрерывной, но не гладкой во всех точках. Он создал её, сложив вместе бесконечно длинный ряд функций косинуса:
f(x) = cos(3x𝝅)/2 + cos(3²x𝝅)/2² + cos(3³x𝝅)/2³ + ...
Как функция она была уродливой и отвратительной. Было даже непонятно, как она будет выглядеть на графике. Но Вейерштрасса это не волновало. Его доказательство состояло не из форм, а из уравнений, и именно это делало его заявление таким мощным. Он не только создал чудовище, но и построил его на железной логике. Он взял собственное новое строгое определение производной и доказал, что для этой новой функции её вычислить невозможно. #математика #mathematics #animation #math #геометрия #geometry #gif #maths #видеоуроки #научные_фильмы #математический_анализ
💡 Physics.Math.Code // @physics_lib
👍40❤23🔥12🤯3
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Поскольку длительность используемых в данном методе обработки электрических импульсов не превышает 0.01 с, выделяющееся тепло не успевает распространиться в глубь материала и даже незначительной энергии оказывается достаточно, чтобы разогреть, расплавить и испарить небольшое количество вещества. Кроме того, давление, развиваемое частицами плазмы при ударе об электрод, способствует выбросу (эрозии) не только расплавленного, но и просто разогретого вещества. Поскольку электрический пробой, как правило, происходит по кратчайшему пути, то прежде всего разрушаются наиболее близко расположенные участки электродов. Таким образом, при приближении одного электрода заданной формы (инструмента) к другому (заготовке) поверхность последнего примет форму поверхности первого. Производительность процесса, качество получаемой поверхности в основном определяются параметрами электрических импульсов (их длительностью, частотой следования, энергией в импульсе). Электроэрозионный метод обработки объединил электроискровой и электроимпульсный методы.
Первые сообщения об электрических разрядах и эффектах, их сопровождающих, делали Роберт Бойль (1694), Бенджамин Франклин (1751), Джозеф Пристли (1766) Лихтенберг Георг Кристиан (1777). В 1938 году советский инженер Л. А. Юткин показал, что серия электроискровых разрядов порождает формообразующие гидравлические удары, что положило начало электроискровой штамповке металлов, и стало следующим, после электродуговой сварки, шагом по развитию технологических методов формообразования электрическими разрядами. В 1941 году учёным Б. Р. Лазаренко и Н. Е. Лазаренко из МГУ было поручено найти методы увеличения срока службы прерывателей-распределителей зажигания автомобильных двигателей. В результате исследований и экспериментов с вольфрамом они обратили внимание на направленное разрушение электрическими разрядами, создаваемыми импульсами определённой формы тока, что послужило толчком к созданию в 1943 году нового технологического процесса обработки заготовок с помощью электроэрозии. #physics #техника #электродинамика #физика #видеоуроки #производство #научные_фильмы
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍21🔥11❤6⚡2🥰2