This media is not supported in your browser
VIEW IN TELEGRAM
Паровая машина — тепловой двигатель внешнего сгорания, преобразующий энергию водяного пара в механическую работу возвратно-поступательного движения поршня, а затем во вращательное движение вала. В более широком смысле паровая машина — любой двигатель внешнего сгорания, который преобразует энергию пара в механическую работу, таким образом к паровым машинам можно было бы отнести и паровую турбину, имеющую до сих пор широкое применение во многих областях техники.
Первый паровой двигатель был создан и использован Фердинандом Вербистом в 1672 году в его изобретении - игрушкой на паровом двигателе, сделанной для китайского императора. Вторая паровая машина была построена в XVII веке французским физиком Дени Папеном и представляла собой цилиндр с поршнем, который поднимался под действием пара, а опускался давлением атмосферы после сгущения отработавшего пара. На этом же принципе были построены в 1705 году вакуумные паровые машины Севери и Ньюкомена для выкачивания воды из копей.
Значительные усовершенствования в вакуумной паровой машине были сделаны Джеймсом Уаттом в 1769 году. Дальнейшее значительное усовершенствование парового двигателя (применение на рабочем ходу пара высокого давления вместо вакуума) было сделано американцем Оливером Эвансом в 1786 году и англичанином Ричардом Тревитиком в 1800 году.
В России первая действующая паровая машина была построена в 1766 году по проекту Ивана Ползунова, предложенному им в 1763 году. Машина Ползунова имела два цилиндра с поршнями, работала непрерывно, и все действия в ней проходили автоматически. Но увидеть своё изобретение в работе И. И. Ползунову не пришлось: он умер 27 мая 1766 года, а его машина пущена в эксплуатацию на Барнаульском заводе только летом. Через пару месяцев из-за поломки она перестала действовать и впоследствии была демонтирована. #опыты #научные_фильмы #физика #термодинамика #мкт #видеоуроки #gif #physics
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍74🔥7❤6😢3🤩2🗿1
📚 Сборник задач по общему курсу физики [1976 - 1981] Сивухин Д.В.
В настоящем издании сборник выходит в пяти книгах, каждая из которых может быть использована самостоятельно:
I. Механика.
II. Термодинамика и молекулярная физика.
III. Электричество.
IV. Оптика.
V. Атомная физика и физика ядра.
💾 Скачать книги
Дмитрий Васильевич Сивухин (1914 — 1988) — советский физик, автор широко известного «Общего курса физики». Кандидат физико-математических наук, профессор МФТИ. Автор статей по гидродинамике, статистической физике, физической оптике, физике плазмы, электродинамике.
Для тех, кто захочет задонать на кофе☕️:
ВТБ:
#физика #квантовая_физика #термодинамика #подборка_книг #механика #physics #оптика #мкт #атомная_физика #ядерная_физика #электричество #магнетизм
💡 Physics.Math.Code // @physics_lib
В настоящем издании сборник выходит в пяти книгах, каждая из которых может быть использована самостоятельно:
I. Механика.
II. Термодинамика и молекулярная физика.
III. Электричество.
IV. Оптика.
V. Атомная физика и физика ядра.
💾 Скачать книги
Дмитрий Васильевич Сивухин (1914 — 1988) — советский физик, автор широко известного «Общего курса физики». Кандидат физико-математических наук, профессор МФТИ. Автор статей по гидродинамике, статистической физике, физической оптике, физике плазмы, электродинамике.
Для тех, кто захочет задонать на кофе☕️:
ВТБ:
+79616572047 (СБП) Сбер: +79026552832 (СБП) #физика #квантовая_физика #термодинамика #подборка_книг #механика #physics #оптика #мкт #атомная_физика #ядерная_физика #электричество #магнетизм
💡 Physics.Math.Code // @physics_lib
👍44❤24🔥9✍2❤🔥2🥰1🤯1🙏1🆒1
💫 Сопротивление металлов зависит от температуры
Величина, учитывающая термическое изменение удельного электрического электрического сопротивления называется температурный коэффициент удельного сопротивления — величина, равная относительному изменению электрического сопротивления участка электрической цепи или удельного сопротивления вещества при изменении температуры на единицу:
Существуют сплавы (например, константан, манганин), имеющие очень малый температурный коэффициент сопротивления, то есть их удельное сопротивление очень слабо зависит от температуры. Эти сплавы применяются в электроизмерительной аппаратуре.
В чистых металлах и большинстве сплавов удельное электрическое сопротивление растёт при увеличении температуры. Это объясняется тем, что с ростом температуры увеличивается интенсивность колебания атомов в узлах кристаллической решетки проводника, что препятствует движению свободных электронов. В полупроводниках и диэлектриках удельное электрическое сопротивление с ростом температуры уменьшается. Это объясняется тем, что с увеличением температуры увеличивается концентрация носителей электрического заряда.|
Удельное сопротивление:
Вещества, находящиеся в сверхпроводящем состоянии, приобретают новые свойства. Наиболее важным из них является способность длительное время (многие годы) поддерживать без затухания электрический ток в проводниках.
Классическая электронная теория не способна объяснить явление сверхпроводимости. Теоретическое объяснение явления сверхпроводимости на основе квантово-механических представлений было дано учеными Дж. Бардиным, Дж. Шриффером (США) и Н. Н. Боголюбовым (СССР) в 1957 г. В 1986 году была обнаружена высокотемпературная сверхпроводимость (при 100 К). В настоящее время ведутся интенсивные работы по поиску новых веществ переходящими в сверхпроводящее состояние при более высокой температуре. Ученые надеются получить вещество в сверхпроводящем состоянии при комнатной температуре. Если удастся создать сверхпроводник при нормальной температуре, то будет решена проблема передачи электроэнергии по проводам без потерь. #физика #электродинамика #наука #physics #science #электричество #мкт #научные_фильмы #видеоуроки #лекции
💡 Physics.Math.Code // @physics_lib
Величина, учитывающая термическое изменение удельного электрического электрического сопротивления называется температурный коэффициент удельного сопротивления — величина, равная относительному изменению электрического сопротивления участка электрической цепи или удельного сопротивления вещества при изменении температуры на единицу:
α = 1/R ⋅ dR/dT . Для большинства металлов и металлических сплавов температурный коэффициент сопротивления положителен: их удельное сопротивление растёт с ростом температуры вследствие рассеяния электронов на фононах (тепловых колебаниях кристаллической решётки). Для полупроводников без примесей он отрицателен (сопротивление с ростом температуры падает), поскольку при повышении температуры всё большее число электронов переходит в зону проводимости, соответственно увеличивается и концентрация дырок. Качественно такой же характер как и у полупроводников и по тем же причинам имеет температурная зависимость сопротивления твёрдых и неполярных жидких диэлектриков. Полярные жидкости уменьшают своё удельное сопротивление с ростом температуры более резко вследствие роста степени диссоциации и уменьшения вязкости. На практике этот эффект применялся для защиты электронных ламп от бросков пускового тока. Температурная зависимость сопротивления металлических сплавов, газов, легированных полупроводников и электролитов носит более сложный характер.Существуют сплавы (например, константан, манганин), имеющие очень малый температурный коэффициент сопротивления, то есть их удельное сопротивление очень слабо зависит от температуры. Эти сплавы применяются в электроизмерительной аппаратуре.
В чистых металлах и большинстве сплавов удельное электрическое сопротивление растёт при увеличении температуры. Это объясняется тем, что с ростом температуры увеличивается интенсивность колебания атомов в узлах кристаллической решетки проводника, что препятствует движению свободных электронов. В полупроводниках и диэлектриках удельное электрическое сопротивление с ростом температуры уменьшается. Это объясняется тем, что с увеличением температуры увеличивается концентрация носителей электрического заряда.|
Удельное сопротивление:
ρ = ρ₀ ⋅ (1 + α⋅ΔT) . Хотя коэффициент α довольно мал, учет зависимости сопротивления от температуры при расчете нагревательных приборов совершенно необходим. При понижении температуры сопротивление металлов должно уменьшаться. В 1911 году датский физик Х. Каммерлинг - Оннес открыл явление, названное сверхпроводимостью. Исследуя зависимость сопротивления ртути от температуры, он обнаружил, что при температуре 4,12 К сопротивление ртути исчезает. В сверхпроводящее состояние могут перейти многие химические соединения и сплавы. Некоторые вещества, переходящие при низких температурах в сверхпроводящее состояние, не являются проводниками при обычных температурах.Вещества, находящиеся в сверхпроводящем состоянии, приобретают новые свойства. Наиболее важным из них является способность длительное время (многие годы) поддерживать без затухания электрический ток в проводниках.
Классическая электронная теория не способна объяснить явление сверхпроводимости. Теоретическое объяснение явления сверхпроводимости на основе квантово-механических представлений было дано учеными Дж. Бардиным, Дж. Шриффером (США) и Н. Н. Боголюбовым (СССР) в 1957 г. В 1986 году была обнаружена высокотемпературная сверхпроводимость (при 100 К). В настоящее время ведутся интенсивные работы по поиску новых веществ переходящими в сверхпроводящее состояние при более высокой температуре. Ученые надеются получить вещество в сверхпроводящем состоянии при комнатной температуре. Если удастся создать сверхпроводник при нормальной температуре, то будет решена проблема передачи электроэнергии по проводам без потерь. #физика #электродинамика #наука #physics #science #электричество #мкт #научные_фильмы #видеоуроки #лекции
💡 Physics.Math.Code // @physics_lib
🔥43👍34❤12⚡7❤🔥2👏2
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Наиболее часто первые исследования изохорного процесса связывают с Гийомом Амонтоном. В своей работе «Парижские мемуары» в 1702 году он описал поведение газа в фиксированном объёме внутри так называемого «воздушного термометра». Жидкость в нём находится в равновесии под воздействием давления газа в резервуаре и атмосферным давлением. При нагревании давление в резервуаре увеличивается, и жидкость вытесняется в выступающую трубку. Зависимость между температурой и давлением была установлена в виде:
p₁/p₂ = (1 + α⋅t₁) / (1 + α⋅t₂) .В 1801 году Джон Дальтон в двух своих эссе опубликовал эксперимент, в котором установил, что все газы и пары, исследованные им при постоянном давлении, одинаково расширяются при изменении температуры, если начальная и конечная температура одинакова. Данный закон получил название закона Гей-Люссака, так как Гей-Люссак вскоре провёл самостоятельные эксперименты и подтвердил одинаковое расширение различных газов, причём получив практически тот же самый коэффициент, что и Дальтон. Впоследствии он же объединил свой закон с законом Бойля — Мариотта, что позволило описывать в том числе и изохорный процесс.
🔥Практическое применение: При идеальном цикле Отто, который приближённо воспроизведён в бензиновом двигателе внутреннего сгорания, такты 2—3 и 4—1 являются изохорными процессами. Работа, совершаемая на выходе двигателя, равна разности работ, которую произведёт газ над поршнем во время третьего такта (то есть рабочего хода), и работы, которую затрачивает поршень на сжатие газа во время второго такта. Так как в двигателе, работающем по циклу Отто используется система принудительного зажигания смеси, то происходит сжатие газа в 7—12 раз.
В цикле Стирлинга также присутствуют два изохорных такта. Для его осуществления в двигателе Стирлинга добавлен регенератор. Газ, проходя через наполнитель в одну сторону, отдаёт тепло от рабочего тела к регенератору, а при движении в другую сторону отдаёт его обратно рабочему телу. Идеальный цикл Стирлинга достигает обратимости и тех же величин КПД что и цикл Карно. Изохорный процесс — также процесс, протекающий в автоклавах и пьезометрах. #физика #термодинамика #опыты #мкт #теплота #нагрев #лекции #physics #science
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍76❤24🔥10🤯4⚡2🤩2