Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Наиболее часто первые исследования изохорного процесса связывают с Гийомом Амонтоном. В своей работе «Парижские мемуары» в 1702 году он описал поведение газа в фиксированном объёме внутри так называемого «воздушного термометра». Жидкость в нём находится в равновесии под воздействием давления газа в резервуаре и атмосферным давлением. При нагревании давление в резервуаре увеличивается, и жидкость вытесняется в выступающую трубку. Зависимость между температурой и давлением была установлена в виде:
p₁/p₂ = (1 + α⋅t₁) / (1 + α⋅t₂) .В 1801 году Джон Дальтон в двух своих эссе опубликовал эксперимент, в котором установил, что все газы и пары, исследованные им при постоянном давлении, одинаково расширяются при изменении температуры, если начальная и конечная температура одинакова. Данный закон получил название закона Гей-Люссака, так как Гей-Люссак вскоре провёл самостоятельные эксперименты и подтвердил одинаковое расширение различных газов, причём получив практически тот же самый коэффициент, что и Дальтон. Впоследствии он же объединил свой закон с законом Бойля — Мариотта, что позволило описывать в том числе и изохорный процесс.
🔥Практическое применение: При идеальном цикле Отто, который приближённо воспроизведён в бензиновом двигателе внутреннего сгорания, такты 2—3 и 4—1 являются изохорными процессами. Работа, совершаемая на выходе двигателя, равна разности работ, которую произведёт газ над поршнем во время третьего такта (то есть рабочего хода), и работы, которую затрачивает поршень на сжатие газа во время второго такта. Так как в двигателе, работающем по циклу Отто используется система принудительного зажигания смеси, то происходит сжатие газа в 7—12 раз.
В цикле Стирлинга также присутствуют два изохорных такта. Для его осуществления в двигателе Стирлинга добавлен регенератор. Газ, проходя через наполнитель в одну сторону, отдаёт тепло от рабочего тела к регенератору, а при движении в другую сторону отдаёт его обратно рабочему телу. Идеальный цикл Стирлинга достигает обратимости и тех же величин КПД что и цикл Карно. Изохорный процесс — также процесс, протекающий в автоклавах и пьезометрах. #физика #термодинамика #опыты #мкт #теплота #нагрев #лекции #physics #science
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍31❤25🔥14🤯2🥰1
Media is too big
VIEW IN TELEGRAM
Вся магия вечных двигателей рушится на фундаментальном уравнении вращательного движения: J · ε = M , где
J — момент инерции маховика (его «нежелание» раскручиваться или инертность. Это аналог массы во втором законе Ньютона, из которого и выводится закон выше).
ε (эпсилон) — угловое ускорение (оно должно быть отлично от нуля, если двигатель раскручивается или оно может быть равным 0, если система вышла на постоянную скорость вращения).
M — суммарный момент сил, приложенных к системе.
Вот в чём подвох: в такой системе пружины создают силы, направленные в разные стороны. Когда одна пружина пытается раскрутить маховик по часовой стрелке, другая в этот же момент пытается крутить его против. Просто сделайте рисунок с торца такого двигателя. Получится, что алгебраическая сумма моментов всех сил (n сил для n пружин) равна нулю. Подставляем это в наше уравнение: J · ε = 0. Момент инерции J — величина не нулевая (маховик-то есть). Единственный способ выполнить это равенство — сделать угловое ускорение ε равным нулю. Вывод: система не может раскрутиться сама по себе.
Но в чем же подвох на видео? Всё довольно банально:
1. Скрытый источник энергии. Часто в кадр не попадает электромоторчик, спрятанный внутри вала или основания, который и раскручивает маховик.
2. Однократный запуск. Устройство раскручивают вручную, снимают фазу «последнего затухающего колебания», а потом видео зацикливают, создавая иллюзию непрерывного движения.
3. Хитрые ракурсы. Камера не показывает полный цикл работы всех пружин, чтобы зритель не увидел момент, когда они мешают, а не помогают движению.
Как бы вы не хотели изобрести вечный двигатель, вам стоит помнить, что закон сохранения (изменения) энергии работает всегда. Если есть диссипативные силы, то полная энергия системы убывает. И вы не сможете сделать вечный двигатель без пополнения энергией извне (но тогда это уже не вечный двигатель). #задачи #опыты #электродинамика #физика #видеоуроки #fun #physics #science #наука #двигатели #вечныйдвигатель
😨 Запрещенный генератор свободной энергии с использованием метода якоря
⚡️ Генератор Постоянного Движения
🔧 Картонный вентилятор
🧲 Магнитный двигатель
💦 Фонтан Герона
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍35❤26🔥9🤯3😱2
⚡️ Электрический водяной мостик 💧
Если в стаканы поместить электроды и подать на них высокое напряжение, то деионизированная вода образует стабильный цилиндрический мост между двумя стаканами. Толщина мостика зависит от величины напряжения и, соответственно, проходящего тока.
Когда между двумя стаканами с водой создаётся разность потенциалов около 10 кВ, между стаканами может возникнуть тонкий водяной мостик. Силы поверхностного натяжения удерживают его на весу, а силы электрического давления не дают мостику распасться на отдельные капли. #gif #опыты #видеоуроки #физика #научные_фильмы #physics
💡 Physics.Math.Code // @physics_lib
Если в стаканы поместить электроды и подать на них высокое напряжение, то деионизированная вода образует стабильный цилиндрический мост между двумя стаканами. Толщина мостика зависит от величины напряжения и, соответственно, проходящего тока.
Когда между двумя стаканами с водой создаётся разность потенциалов около 10 кВ, между стаканами может возникнуть тонкий водяной мостик. Силы поверхностного натяжения удерживают его на весу, а силы электрического давления не дают мостику распасться на отдельные капли. #gif #опыты #видеоуроки #физика #научные_фильмы #physics
💡 Physics.Math.Code // @physics_lib
👍49🔥16⚡10✍2❤2
This media is not supported in your browser
VIEW IN TELEGRAM
🛩💨 Эффект Прандтля-Глоерта (паровой конус) — научно-популярное название конусовидного облака конденсата, возникающего вокруг объекта, движущегося на околозвуковых скоростях. Чаще всего наблюдается у самолётов. Назван в честь немецкого физика Людвига Прандтля и английского физика Германна Глоерта.
При достижении определённой скорости потока, обтекающего тело (крыло), соответствующей числу Маха, называемому критическим, местная скорость начинает превышать скорость звука. При этом возникает скачок уплотнения — нормальная ударная волна. Однако течения в пограничном слое в силу вязкости имеют существенно меньшую скорость. Возникает градиент скоростей, перпендикулярный поверхности, и как следствие, градиент давления. Этот градиент является неблагоприятным, приводящим к отрыву потока в основании ударной волны, и скачок уплотнения принимает лямбдовидную форму. Отрывное течение как бы оборачивается вокруг скачка, расширяется в зону за ударной волной. Этот процесс является местно адиабатическим, где занимаемый воздухом объём увеличивается, а его температура понижается. Если влажность воздуха достаточно велика, то температура воздуха может оказаться ниже точки росы. Тогда содержащийся в воздухе водяной пар конденсируется в виде мельчайших капелек, которые образуют небольшое облако. Поскольку отрывные течения за ударной волной направлены вдоль её фронта, передний край облака повторяет её форму, образуя конус.
Поскольку по мере удаления от фронта ударной волны температура снова становится равной температуре невозмущенного потока, конденсат испаряется. Поэтому складывается впечатление, что облако пара следует за летательным аппаратом.
При дальнейшем росте скорости фронт нормального скачка смещается по направлению потока, течения в пограничном слое становятся сверхзвуковыми и условия для конденсации исчезают. Поэтому паровой конус наблюдается лишь в узком диапазоне скоростей. #gif #физика #механика #видеоуроки #аэродинамика #термодинамика #МКТ #physics
💡 Physics.Math.Code // @physics_lib
При достижении определённой скорости потока, обтекающего тело (крыло), соответствующей числу Маха, называемому критическим, местная скорость начинает превышать скорость звука. При этом возникает скачок уплотнения — нормальная ударная волна. Однако течения в пограничном слое в силу вязкости имеют существенно меньшую скорость. Возникает градиент скоростей, перпендикулярный поверхности, и как следствие, градиент давления. Этот градиент является неблагоприятным, приводящим к отрыву потока в основании ударной волны, и скачок уплотнения принимает лямбдовидную форму. Отрывное течение как бы оборачивается вокруг скачка, расширяется в зону за ударной волной. Этот процесс является местно адиабатическим, где занимаемый воздухом объём увеличивается, а его температура понижается. Если влажность воздуха достаточно велика, то температура воздуха может оказаться ниже точки росы. Тогда содержащийся в воздухе водяной пар конденсируется в виде мельчайших капелек, которые образуют небольшое облако. Поскольку отрывные течения за ударной волной направлены вдоль её фронта, передний край облака повторяет её форму, образуя конус.
Поскольку по мере удаления от фронта ударной волны температура снова становится равной температуре невозмущенного потока, конденсат испаряется. Поэтому складывается впечатление, что облако пара следует за летательным аппаратом.
При дальнейшем росте скорости фронт нормального скачка смещается по направлению потока, течения в пограничном слое становятся сверхзвуковыми и условия для конденсации исчезают. Поэтому паровой конус наблюдается лишь в узком диапазоне скоростей. #gif #физика #механика #видеоуроки #аэродинамика #термодинамика #МКТ #physics
💡 Physics.Math.Code // @physics_lib
👍83❤22🔥14✍2🤔2🤯2⚡1
This media is not supported in your browser
VIEW IN TELEGRAM
В 1820 году Андре-Мари Ампер, вдохновлённый открытием Эрстеда (связь электричества и магнетизма), провёл серию фундаментальных экспериментов. В ходе них он установил количественные законы взаимодействия электрических токов.
Суть опыта: Два тонких параллельных проводника, по которым протекает электрический ток, способны механически взаимодействовать:
▪️ Токи, текущие в одном направлении, — притягиваются.
▪️Токи, текущие в противоположных направлениях, — отталкиваются.
Именно Ампер первым количественно исследовал и описал это явление, лежащее в основе определения единицы силы тока — Ампера в системе СИ. Малоизвестные факты:
1. Магнитное поле — относительный эффект. С точки зрения специальной теории относительности, сила притяжения между двумя параллельными токами одного направления может быть интерпретирована как следствие лоренцева сокращения длины. При движении положительных ионов в проводнике для движущихся электронов второго провода расстояние между ионами кажется меньшим, что приводит к возникновению эффективного избыточного положительного заряда и кулоновского притяжения.
2. Сила огромна в масштабах Вселенной. Закон Ампера является фундаментальным для астрофизики. Например, в солнечных вспышках и молниях токи достигают сотен тысяч ампер, и силы Ампера, стремясь их сжать (эффект «пинча»), играют ключевую роль в динамике плазмы.
3. Определение эталона. Один Ампер — это сила неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенным в вакууме на расстоянии 1 метр друг от друга, вызвал бы на каждом участке проводника длиной 1 метр силу взаимодействия, равную 2×10⁻⁷ ньютона.
⚡️ Задача для подписчиков: следует ли из данных опытов, что большие токи в дуговом разряде или молнии обладают самофокусировкой и уменьшают токовый канал? Если да, то как оценить предельную толщину канала молнии?
#электричество #физика #электродинамика #магнетизм #опыты #physics #эксперименты
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥23👍18❤8⚡4🤔4🤯3
☄️ Взаимодействие раскалённого металла с водой. Когда возможен взрыв? Вопрос, кажущийся простым, таит в себе серьёзные опасности, актуальные для металлургической и химической промышленности. Рассмотрим два варианта:
▪️ 1. Единичный раскалённый металлический шарик
При контакте с водой происходит интенсивная теплопередача. Металл быстро отдаёт тепло, вызывая кипение воды в непосредственном контакте с ним. Образуется слой пара (паровая рубашка), который изолирует шарик от жидкости, препятствуя мгновенному теплообмену. Шарик будет остывать, а вода — бурно кипеть. Взрыва не произойдёт.
▪️2. Большой объём жидкого металла
Ситуация кардинально меняется. Массивный расплав не успевает быстро остыть. При его попадании в воду происходит не просто кипение, а стремительное парообразование по всей поверхности контакта. Пар образуется с такой скоростью, что буквально разрывает жидкую среду, вызывая мощный паровой взрыв (взрыв парового облака). Энергия выделяется за счёт почти мгновенного перехода воды в газообразное состояние и её резкого расширения.
▪️3. Образование гремучей смеси и химический взрыв
Это тоже возможно, но при определённых условиях. Ключевой фактор — химический состав металла.
▫️Если металл является высокоактивным (например, щелочные или щёлочноземельные металлы: натрий, калий, кальций), то при высокой температуре он не просто окисляется, а напрямую реагирует с водой:
▫️Выделяющийся водород (H₂) смешивается с кислородом воздуха. Образовавшаяся гремучая смесь воспламеняется от раскалённого металла или искры, что приводит к объёмному химическому взрыву.
Условия для взрыва:
1. Металл должен быть химически активным (восстановителем).
2. Температура должна быть достаточной для инициации бурной реакции.
3. Концентрация водорода в воздухе должна находиться в пределах воспламеняемости (примерно 4 - 75 % по объёму).
✍🏻 Эффект Лейденфроста в промышленных масштабах: При контакте капли расплава с водой может возникать устойчивая паровая прослойка. Взрыв происходит, когда эта прослойка внезапно коллапсирует, обеспечивая мгновенный и огромный по площади контакт горячей поверхности с водой. Этот процесс называется тепловым взаимодействием быстрого фазового перехода.
✍🏻 Каталитическая роль оксидной плёнки: На поверхности многих расплавов (например, алюминия) есть оксидная плёнка. Она может препятствовать прямому контакту и реакции с водой. Однако при взрывном парообразовании плёнка разрывается, обнажая чистый, химически активный металл.
✍🏻 Распад воды на элементы: При экстремально высоких температурах (свыше 2500°C, что достижимо для некоторых металлов и термитной реакции) возможен не столько химический синтез, сколько термическая диссоциация воды на атомарный водород и кислород, что резко увеличивает взрывоопасность среды.
Взрыв при попадании расплава в воду — это реальная и крайне опасная комбинация физического (парового) и, для активных металлов, химического взрыва. Основные риски связаны не с малыми объёмами, а с промышленными инцидентами, например, при разливе жидкого чугуна или алюминия. #термодинамика #мкт #химия #физика #наука #магнетизм #опыты #physics #эксперименты
💡 Physics.Math.Code // @physics_lib
▪️ 1. Единичный раскалённый металлический шарик
При контакте с водой происходит интенсивная теплопередача. Металл быстро отдаёт тепло, вызывая кипение воды в непосредственном контакте с ним. Образуется слой пара (паровая рубашка), который изолирует шарик от жидкости, препятствуя мгновенному теплообмену. Шарик будет остывать, а вода — бурно кипеть. Взрыва не произойдёт.
▪️2. Большой объём жидкого металла
Ситуация кардинально меняется. Массивный расплав не успевает быстро остыть. При его попадании в воду происходит не просто кипение, а стремительное парообразование по всей поверхности контакта. Пар образуется с такой скоростью, что буквально разрывает жидкую среду, вызывая мощный паровой взрыв (взрыв парового облака). Энергия выделяется за счёт почти мгновенного перехода воды в газообразное состояние и её резкого расширения.
▪️3. Образование гремучей смеси и химический взрыв
Это тоже возможно, но при определённых условиях. Ключевой фактор — химический состав металла.
▫️Если металл является высокоактивным (например, щелочные или щёлочноземельные металлы: натрий, калий, кальций), то при высокой температуре он не просто окисляется, а напрямую реагирует с водой:
2Na + 2H₂O → 2NaOH + H₂ + Q (тепло)▫️Выделяющийся водород (H₂) смешивается с кислородом воздуха. Образовавшаяся гремучая смесь воспламеняется от раскалённого металла или искры, что приводит к объёмному химическому взрыву.
Условия для взрыва:
1. Металл должен быть химически активным (восстановителем).
2. Температура должна быть достаточной для инициации бурной реакции.
3. Концентрация водорода в воздухе должна находиться в пределах воспламеняемости (примерно 4 - 75 % по объёму).
✍🏻 Эффект Лейденфроста в промышленных масштабах: При контакте капли расплава с водой может возникать устойчивая паровая прослойка. Взрыв происходит, когда эта прослойка внезапно коллапсирует, обеспечивая мгновенный и огромный по площади контакт горячей поверхности с водой. Этот процесс называется тепловым взаимодействием быстрого фазового перехода.
✍🏻 Каталитическая роль оксидной плёнки: На поверхности многих расплавов (например, алюминия) есть оксидная плёнка. Она может препятствовать прямому контакту и реакции с водой. Однако при взрывном парообразовании плёнка разрывается, обнажая чистый, химически активный металл.
✍🏻 Распад воды на элементы: При экстремально высоких температурах (свыше 2500°C, что достижимо для некоторых металлов и термитной реакции) возможен не столько химический синтез, сколько термическая диссоциация воды на атомарный водород и кислород, что резко увеличивает взрывоопасность среды.
Взрыв при попадании расплава в воду — это реальная и крайне опасная комбинация физического (парового) и, для активных металлов, химического взрыва. Основные риски связаны не с малыми объёмами, а с промышленными инцидентами, например, при разливе жидкого чугуна или алюминия. #термодинамика #мкт #химия #физика #наука #магнетизм #опыты #physics #эксперименты
💡 Physics.Math.Code // @physics_lib
🔥31❤26👍11⚡2😱1
Media is too big
VIEW IN TELEGRAM
При проектировании любых конструкций — от железнодорожных путей до микрочипов — инженеры обязаны учитывать фундаментальное физическое явление: термическое расширение. Почему металлический шарик при нагреве перестаёт проходить через кольцо? Нагреваясь, металлический шарик расширяется, и его объём увеличивается. Это происходит из-за изменения характера тепловых колебаний атомов в кристаллической решётке металла.
1. В нормальном состоянии атомы в узлах решётки совершают хаотические колебания вокруг положения равновесия.
2. При нагреве кинетическая энергия атомов возрастает.
3. Амплитуда колебаний атомов значительно увеличивается.
4. Среднее расстояние между атомами растёт, что и приводит к увеличению размера всего макроскопического тела.
Проще говоря, «тепловое дрожание» атомов становится более интенсивным, и они вынуждены отодвигаться друг от друга, занимая больше пространства.
Существуют ли тела, которые сжимаются при нагреве?
Да, такое явление называется аномальное термическое расширение. Оно наблюдается у некоторых материалов в определённых температурных диапазонах.
Классический пример — вода. При нагреве от 0°C до 4°C её объём не увеличивается, а уменьшается. Плотность воды при 4°C максимальна.
Среди твёрдых тел аналогичным поведением обладают:
1. Кремний и германий при очень низких температурах.
2. Сплавы с «эффектом памяти» (например, нитинол).
3. Некоторые виды керамик и цирконий-вольфрамат.
4. Обычный лёд при температуре, близкой к точке плавления.
Малоизвестные факты:
1. Инвар — сплав железа (64%) и никеля (36%), обладающий практически нулевым коэффициентом теплового расширения. Он используется в прецизионных приборах, эталонных мерках длины и деталях космических аппаратов.
2. Относительность расширения. При одинаковом нагреве алюминиевый стержень расширится примерно в два раза сильнее, чем железный. Это критически важно при создании биметаллических элементов (например, в термостатах).
3. Расширение Вселенной. В некоторой аналогии, метрическое расширение Вселенной описывается уравнениями, имеющими сходство с формулами теплового расширения, хотя природа этого явления совершенно иная.
Термическое расширение — не просто лабораторный феномен, а мощная сила, которую необходимо учитывать. Оно наглядно демонстрирует прямую связь между макромиром, который мы видим, и микромиром атомных взаимодействий.
#термодинамика #мкт #химия #физика #наука #микромир #опыты #physics #эксперименты #science
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍42❤12🔥9🤝6🤔3❤🔥2
This media is not supported in your browser
VIEW IN TELEGRAM
Вчера был пост про
▪️ Принцип прост: При охлаждении до -196°C большинство металлов ощутимо сжимаются (коэффициент термического расширения работает в обе стороны).
▪️ Процесс: Деталь погружают в жидкий азот. Она «усыхает» на несколько сотых миллиметра — и этого достаточно.
▪️ Монтаж: Быстро, пока деталь холодная, её практически вручную устанавливают в отверстие.
▪️ Финал: Деталь прогревается до температуры окружающей среды и расширяется, создавая неразъемное, сверхпрочное соединение.
Основные плюсы такого метода: не повреждает покрытие, идеальная точность, иногда это единственно возможные способ. Некоторые механизмы могут быть собраны только с помощью экстремального холода.
#термодинамика #мкт #химия #физика #наука #микромир #опыты #physics #эксперименты #science #азот
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
❤🔥24👍20🔥10❤2🤩2🤝2💯1