Media is too big
VIEW IN TELEGRAM
Принцип работы основан на импульсном повышающем преобразователе . Можно использовать катушку индуктивности (повышающий трансформатор) для создания высоковольтного импульса, который пробивает воздушный зазор. Схема генерирует импульсы высокого напряжения (тысячи вольт), достаточные для создания болезненного удара током.
⚠️ Никогда не замыкайте выходные электроды напрямую. Это мгновенно выведет компоненты из строя. Используемая батарейка AAAA имеет небольшую емкость, но при коротком замыкании может сильно нагреться. Дуга имеет очень высокую температуру. Не прикасайтесь к ней и не направляйте на легковоспламеняющиеся материалы. Держите зажигалку так, чтобы дуга не касалась металлических частей плиты, чтобы избежать короткого замыкания.
По сути у нас схема блокинг-генератора на одном транзисторе. Это классическая и очень эффективная схема для таких задач. Опишем примерный принцип работы:
1. Ток от батареи течет через первичную обмотку катушки, открывая транзистор.
2. Магнитное поле в катушке накапливает энергию.
3. В определенный момент ток перестает расти, и поле начинает схлопываться.
4. Это схлопывание создает во вторичной (высоковольтной) обмотке короткий импульс высокого напряжения, который и создает дугу.
Необходимые компоненты:
1. Источник питания: 1 батарейка AAAA (3.7V)
2. Транзистор: NPN, желательно мощный и высоковольтный. Идеально подойдут: 2N3055 , MJE13007 , BD139, КТ815.
3. Резистор: 1 кОм (R1), мощностью 0.25 - 0.5 Вт.
4. Катушка индуктивности (сердечник): Лучше всего подойдет ферритовый стержень от старого радиоприемника. Можно разобрать ненужный импульсный трансформатор или дроссель.
5. Обмоточный провод:
— Первичная обмотка (толстая): Медный эмалированный провод диаметром 0.5 - 0.8 мм. Длина ~1 метр.
— Вторичная обмотка (тонкая): Медный эмалированный провод диаметром 0.1 - 0.2 мм. Длина ~5-10 метров.
6. Электроды: Два оголенных провода или кусочки вольфрамового электрода (идеально, так как они не обгорают). Можно использовать толстые канцелярские скрепки.
7. Корпус и монтаж: Монтажная плата или кусок текстолита, провода, кнопка без фиксации (опционально, но желательно для экономии батареи), термоусадка/изолента.
#физика #схемотехника #электродинамика #опыты #эксперименты #physics #видеоуроки #электроника #science
🔥 Свечение газов вблизи катушки Тесла
⚡️ Arduino в качестве управляющего элемента в большом станке — это возможно
💽 Самые массовые HDD Seagate ST-225
📕 Основы микроэлектроники [2001] Степаненко И.П.
📘 Практикум начинающего радиолюбителя [1984] (2-е изд., перераб. и доп.) Борисов В.Г.
⚡️ Ионофон
📚 Искусство схемотехники, 4-е издание (в 3 томах) [1993—2014] Пауль Хоровиц, Уинфилд Хилл
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍64🔥22❤12⚡4🆒1
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
〰️ Акустическая левитация — это метод взвешивания вещества в воздухе против силы тяжести с использованием давления акустического излучения от звуковых волн высокой интенсивности. Метод работает по тем же принципам, что и акустический пинцет, используя силы акустического излучения. Однако акустические пинцеты, как правило, представляют собой устройства небольшого размера, которые работают в текучей среде и в меньшей степени подвержены влиянию силы тяжести, тогда как акустическая левитация в первую очередь связана с преодолением силы тяжести.
Обычно используются звуковые волны на ультразвуковых частотах, таким образом, не создавая звука, слышимого людям. В первую очередь это связано с высокой интенсивностью звука, необходимой для противодействия силе тяжести. Однако были случаи использования слышимых частот.
Существуют различные методы генерации звука, но наиболее распространенным является использование пьезоэлектрических преобразователей, которые могут эффективно генерировать сигналы высокой амплитуды на желаемых частотах. Этим методом сложнее управлять, чем другими, такими как электромагнитная левитация, но его преимущество заключается в возможности левитации непроводящих материалов.
Хотя изначально акустическая левитация была статичной, она прошла путь от неподвижной левитации до динамического управления парящими объектами - способности, полезной в фармацевтической и электронной промышленности. Это динамическое управление было впервые реализовано с помощью прототипа с массивом квадратных акустических излучателей, похожих на шахматную доску, которые перемещают объект с одного квадрата на другой, медленно снижая интенсивность звука, излучаемого одним квадратом, при одновременном увеличении интенсивности звука из другого, позволяя объекту перемещаться практически вертикально вверх. Совсем недавно разработка плат преобразователей с фазированной антенной решеткой позволила более произвольно управлять несколькими частицами и каплями одновременно. Недавние достижения также привели к значительному снижению цены на эту технологию. «TinyLev» — это акустический левитатор, который может быть сконструирован из широко доступных недорогих готовых компонентов и одной рамки, напечатанной на 3D-принтере.
Первая демонстрация возможности акустической левитации была сделана в экспериментах с трубкой Кундта в 1866 году. Эксперимент в резонансной камере продемонстрировал, что частицы могут собираться в узлах стоячей волны силами акустического излучения. Однако первоначальный эксперимент проводился с целью расчета длин волн и, следовательно, скорости звука внутри газа.
Первая левитация была продемонстрирована Бюксом и Мюллером в 1933 году, которые левитировали капли спирта между кристаллом кварца и отражателем. Следующий шаг вперед был сделан Хилари Сент-Клер, которая интересовалась силами акустического излучения в первую очередь для их применения при агломерации частиц пыли для использования в горнодобывающей промышленности. Он создал первое электромагнитное устройство для создания амплитуд возбуждения, необходимых для левитации, затем перешел к левитации более крупных и тяжелых предметов, включая монету.
#физика #наука #science #physics #акустика #волны #опыты #эксперименты #видеоуроки
💡 Physics.Math.Code // @physics_lib
Обычно используются звуковые волны на ультразвуковых частотах, таким образом, не создавая звука, слышимого людям. В первую очередь это связано с высокой интенсивностью звука, необходимой для противодействия силе тяжести. Однако были случаи использования слышимых частот.
Существуют различные методы генерации звука, но наиболее распространенным является использование пьезоэлектрических преобразователей, которые могут эффективно генерировать сигналы высокой амплитуды на желаемых частотах. Этим методом сложнее управлять, чем другими, такими как электромагнитная левитация, но его преимущество заключается в возможности левитации непроводящих материалов.
Хотя изначально акустическая левитация была статичной, она прошла путь от неподвижной левитации до динамического управления парящими объектами - способности, полезной в фармацевтической и электронной промышленности. Это динамическое управление было впервые реализовано с помощью прототипа с массивом квадратных акустических излучателей, похожих на шахматную доску, которые перемещают объект с одного квадрата на другой, медленно снижая интенсивность звука, излучаемого одним квадратом, при одновременном увеличении интенсивности звука из другого, позволяя объекту перемещаться практически вертикально вверх. Совсем недавно разработка плат преобразователей с фазированной антенной решеткой позволила более произвольно управлять несколькими частицами и каплями одновременно. Недавние достижения также привели к значительному снижению цены на эту технологию. «TinyLev» — это акустический левитатор, который может быть сконструирован из широко доступных недорогих готовых компонентов и одной рамки, напечатанной на 3D-принтере.
Первая демонстрация возможности акустической левитации была сделана в экспериментах с трубкой Кундта в 1866 году. Эксперимент в резонансной камере продемонстрировал, что частицы могут собираться в узлах стоячей волны силами акустического излучения. Однако первоначальный эксперимент проводился с целью расчета длин волн и, следовательно, скорости звука внутри газа.
Первая левитация была продемонстрирована Бюксом и Мюллером в 1933 году, которые левитировали капли спирта между кристаллом кварца и отражателем. Следующий шаг вперед был сделан Хилари Сент-Клер, которая интересовалась силами акустического излучения в первую очередь для их применения при агломерации частиц пыли для использования в горнодобывающей промышленности. Он создал первое электромагнитное устройство для создания амплитуд возбуждения, необходимых для левитации, затем перешел к левитации более крупных и тяжелых предметов, включая монету.
#физика #наука #science #physics #акустика #волны #опыты #эксперименты #видеоуроки
💡 Physics.Math.Code // @physics_lib
3❤25⚡15👍13🔥7❤🔥1
🧲 Магнитная передача по своей геометрии и функциям напоминает традиционную механическую передачу, в которой вместо зубьев используются магниты. Когда два противоположных магнита приближаются друг к другу, они отталкиваются; если их разместить на двух кольцах, магниты будут действовать как зубья. В отличие от обычной жёсткой контактной обратной связи в цилиндрической передаче, где шестерня может свободно вращаться до тех пор, пока не вступит в контакт со следующей шестернёй, магнитная передача имеет упругую обратную связь. В результате магнитные передачи способны оказывать давление независимо от относительного угла. Несмотря на то, что они обеспечивают такое же передаточное число, как и традиционная зубчатая передача, такие шестерни работают без соприкосновения и не подвержены износу сопрягаемых поверхностей, не шумят и могут проскальзывать без повреждений.
🧲 Магнитная муфта (или магнитный редуктор) представляет собой устройство для передачи вращательного момента между соосными (и не соосными) валами без механического контакта. Основу работы устройства составляют силы магнитного взаимодействия. Роторы разделены герметичным немагнитным экраном (воздушный зазор или стенка из немагнитного материала), что обеспечивает возможность передачи момента через физическое препятствие.
▪️ Синхронная магнитная муфта: Если на обоих роторах установлены постоянные магниты, их магнитные поля стремятся к состоянию с минимальной энергией, что соответствует взаимной ориентации разноименных полюсов. При вращении ведущего ротора его магнитное поле, воздействуя на поле ведомого ротора, создает вращающий момент, вызывающий синхронное вращение. Момент передачи прямо пропорционален градиенту магнитной энергии в воздушном зазоре.
▪️ Асинхронная магнитная муфта (Индукционная): Если ведомый ротор выполнен из немагнитного материала с высокой электропроводностью (например, меди или алюминия), то вращающееся магнитное поле ведущего ротора индуцирует в нем вихревые токи (токи Фуко). Взаимодействие между магнитным полем ведущего ротора и этими индуцированными токами создает силу Лоренца, приводящую ведомый ротор во вращение. При этом возникает скольжение — ведомый ротор отстает по частоте вращения от ведущего, что является необходимым условием для возникновения вращающего момента.
⚙️ Магнитный редуктор является развитием принципа магнитной муфты. Он содержит, как минимум, три ротора с различным количеством пар полюсов (p). Отношение чисел пар полюсов на роторах определяет передаточное отношение по формуле, аналогичной для механических редукторов. Момент передается за счет гармонического взаимодействия магнитных полей, создаваемых магнитами роторов с разным шагом. Таким образом, работа магнитной муфты и редуктора основана на фундаментальных принципах магнитостатики и электромагнетизма: силовом взаимодействии постоянных магнитов или взаимодействии вращающегося магнитного поля с индуцированными в проводящей среде вихревыми токами. Отсутствие механического контакта обуславливает такие преимущества, как необслуживаемость, высокую надежность и абсолютную герметичность.
Редуктор с магнитной муфтой можно использовать в вакууме без смазки или при работе с герметичными барьерами. Это может быть преимуществом во взрывоопасных или других опасных средах, где утечки представляют реальную угрозу. Однако, стоит помнить, что при условиях, когда температура превышает точку Кюри, магнитные свойства теряются. Точка Кюри (или температура Кюри) — это критическая температура, выше которой ферромагнетик или ферримагнетик теряет свои спонтанные намагниченность и постоянные магнитные свойства, превращаясь в парамагнетик. Для наиболее распространенных марок неодимовых магнитов температура Кюри лежит в диапазоне от 310 °C до 400 °C. Потеря магнитных свойств при нагреве выше точки Кюри является необратимым процессом для стандартных магнитов. #видеоуроки #physics #физика #опыты #электродинамика #электричество #магнетизм #эксперименты #научные_фильмы
💡 Physics.Math.Code // @physics_lib
▪️ Синхронная магнитная муфта: Если на обоих роторах установлены постоянные магниты, их магнитные поля стремятся к состоянию с минимальной энергией, что соответствует взаимной ориентации разноименных полюсов. При вращении ведущего ротора его магнитное поле, воздействуя на поле ведомого ротора, создает вращающий момент, вызывающий синхронное вращение. Момент передачи прямо пропорционален градиенту магнитной энергии в воздушном зазоре.
▪️ Асинхронная магнитная муфта (Индукционная): Если ведомый ротор выполнен из немагнитного материала с высокой электропроводностью (например, меди или алюминия), то вращающееся магнитное поле ведущего ротора индуцирует в нем вихревые токи (токи Фуко). Взаимодействие между магнитным полем ведущего ротора и этими индуцированными токами создает силу Лоренца, приводящую ведомый ротор во вращение. При этом возникает скольжение — ведомый ротор отстает по частоте вращения от ведущего, что является необходимым условием для возникновения вращающего момента.
Редуктор с магнитной муфтой можно использовать в вакууме без смазки или при работе с герметичными барьерами. Это может быть преимуществом во взрывоопасных или других опасных средах, где утечки представляют реальную угрозу. Однако, стоит помнить, что при условиях, когда температура превышает точку Кюри, магнитные свойства теряются. Точка Кюри (или температура Кюри) — это критическая температура, выше которой ферромагнетик или ферримагнетик теряет свои спонтанные намагниченность и постоянные магнитные свойства, превращаясь в парамагнетик. Для наиболее распространенных марок неодимовых магнитов температура Кюри лежит в диапазоне от 310 °C до 400 °C. Потеря магнитных свойств при нагреве выше точки Кюри является необратимым процессом для стандартных магнитов. #видеоуроки #physics #физика #опыты #электродинамика #электричество #магнетизм #эксперименты #научные_фильмы
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1🔥25❤11👍10🤝4⚡3🥰1😭1