Physics.Math.Code
143K subscribers
5.2K photos
2.09K videos
5.81K files
4.47K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

№ 6045941532

Обратная связь: @physicist_i
Download Telegram
This media is not supported in your browser
VIEW IN TELEGRAM
🧲 Магнитная левитация волчка в потенциальной яме индукции внешнего магнитного поля 💤

Над платформой с магнитами (постоянными или катушками с током) раскручивают волчок, а затем убирают подставку — и он продолжает парить и крутиться в воздухе. Какая физика в основе?

▪️ 1. Магнитная левитация: В основании волчка и на подставке установлены сильные неодимовые магниты, обращенные друг к другу одноименными полюсами (север к северу или юг к югу). Они отталкиваются, создавая силу, направленную против гравитации. Этой силы как раз хватает, чтобы удерживать вес волчка в воздухе.

▪️ 2. Гироскопический эффект (стабилизация): Одного отталкивания мало. Если бы волчок не вращался, он бы просто перевернулся, так как положение «вверх тормашками» на отталкивающих магнитах неустойчиво. Но раскрученный волчок — это гироскоп. Гироскоп стремится сохранить ориентацию своей оси вращения в пространстве. Эта гироскопическая стабильность не дает волчку опрокинуться и заставляет его прецессировать вокруг магнитной оси, оставаясь в устойчивом парении.

📐 Особенности конструкции:
1. Сильные магниты: Обычно это неодимовые (NdFeB) магниты. От их силы зависит высота левитации.
2. Диамагнитный стабилизатор (секретный ингредиент): В самых стабильных конструкциях снизу часто устанавливают пластину из диамагнетика (например, пиролитического графита или меди). Диамагнетики слабо отталкиваются от любого магнитного поля. Эта пластина создает дополнительную «восстанавливающую силу», которая не дает волчку улететь в сторону и делает левитацию невероятно стабильной. Без нее волчок было бы очень сложно удержать в центре.
3. Идеальный вес и балансировка: Волчок должен быть идеально сбалансированным. Его вес должен в точности компенсироваться магнитной подъемной силой на определенной высоте.

👨‍🔬 Кто первый? Хотя подобные эффекты изучались и раньше, популяризатором именно этой элегантной демонстрации с волчком считается американский физик Рой Харриготен (Roy Harrigan), который запатентовал подобное устройство в начале 1980-х. Позже, в 2000-х, профессор Ларри Спир (Larry Spring) и знаменитый популяризатор науки Профессор Магги (Prof. Maggy) из Англии доработали и показали миру этот опыт в своих лекциях, сделав его вирусным. Парящий волчок — это не иллюзия, а физическая система, где магнитное отталкивание борется с гравитацией, а гироскопический эффект обеспечивает устойчивость. #видеоуроки #physics #физика #опыты #электродинамика #электричество #магнетизм #эксперименты #научные_фильмы

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4326🔥236❤‍🔥2🤔1
This media is not supported in your browser
VIEW IN TELEGRAM
💫 ЭМ поле и ртуть. Почему она крутится? 🌀

Под действием электрического поля ртуть отдает один или два своих валентных электрона, образуя электроположительные ионы, и поэтому она может проводить электричество. Однако, атомы ртути (Hg) прочно удерживают свои валентные электроны и с трудом предоставляют их в «общее пользование». Но когда начинает течь ток, кристаллическая решётка ртути оказывается неустойчивой. В опыте имеем скрещенные поля: электрическое поле E и магнитное поле B, вектора которых направлены под углом π/2. В таких полях заряженные частицы из-за силы Лоренца двигаются по траектории, представляющей собой эпициклоиду. Но для наблюдателя кажется, что мы имеем вихревой круговой поток ртути. Разумеется, четкую математическую эпициклоиду получить не получится, ведь мы должны учитывать огромное множество заряженных частиц, а для более корректного описания придется подключать уравнение Навье - Стокса. В совокупности с неустойчивостью ДУ и неоднородных граничных условий описание потока представляет собой очень сложную математическую задачу. #гидродинамика #механика #электричество #магнетизм #физика #physics #видеоуроки #gif

💡 Physics.Math.Code // @physics_lib
1👍46❤‍🔥1410🤔755🔥5
Media is too big
VIEW IN TELEGRAM
⚡️ Самодельная зажигалка с дугой от батарейки на 3.7 V

Принцип работы основан на импульсном повышающем преобразователе . Можно использовать катушку индуктивности (повышающий трансформатор) для создания высоковольтного импульса, который пробивает воздушный зазор. Схема генерирует импульсы высокого напряжения (тысячи вольт), достаточные для создания болезненного удара током.

⚠️ Никогда не замыкайте выходные электроды напрямую. Это мгновенно выведет компоненты из строя. Используемая батарейка AAAA имеет небольшую емкость, но при коротком замыкании может сильно нагреться. Дуга имеет очень высокую температуру. Не прикасайтесь к ней и не направляйте на легковоспламеняющиеся материалы. Держите зажигалку так, чтобы дуга не касалась металлических частей плиты, чтобы избежать короткого замыкания.

По сути у нас схема блокинг-генератора на одном транзисторе. Это классическая и очень эффективная схема для таких задач. Опишем примерный принцип работы:
1. Ток от батареи течет через первичную обмотку катушки, открывая транзистор.
2. Магнитное поле в катушке накапливает энергию.
3. В определенный момент ток перестает расти, и поле начинает схлопываться.
4. Это схлопывание создает во вторичной (высоковольтной) обмотке короткий импульс высокого напряжения, который и создает дугу.

Необходимые компоненты:
1. Источник питания: 1 батарейка AAAA (3.7V)
2. Транзистор: NPN, желательно мощный и высоковольтный. Идеально подойдут: 2N3055 , MJE13007 , BD139, КТ815.
3. Резистор: 1 кОм (R1), мощностью 0.25 - 0.5 Вт.
4. Катушка индуктивности (сердечник): Лучше всего подойдет ферритовый стержень от старого радиоприемника. Можно разобрать ненужный импульсный трансформатор или дроссель.
5. Обмоточный провод:
— Первичная обмотка (толстая): Медный эмалированный провод диаметром 0.5 - 0.8 мм. Длина ~1 метр.
— Вторичная обмотка (тонкая): Медный эмалированный провод диаметром 0.1 - 0.2 мм. Длина ~5-10 метров.
6. Электроды: Два оголенных провода или кусочки вольфрамового электрода (идеально, так как они не обгорают). Можно использовать толстые канцелярские скрепки.
7. Корпус и монтаж: Монтажная плата или кусок текстолита, провода, кнопка без фиксации (опционально, но желательно для экономии батареи), термоусадка/изолента.
#физика #схемотехника #электродинамика #опыты #эксперименты #physics #видеоуроки #электроника #science

🔥 Свечение газов вблизи катушки Тесла

⚡️ Arduino в качестве управляющего элемента в большом станке — это возможно

💽 Самые массовые HDD Seagate ST-225

💥 Лазерное скальпирование микросхемы

📕 Основы микроэлектроники [2001] Степаненко И.П.

📘 Практикум начинающего радиолюбителя [1984] (2-е изд., перераб. и доп.) Борисов В.Г.

⚡️ Ионофон

📚 Искусство схемотехники, 4-е издание (в 3 томах) [1993—2014] Пауль Хоровиц, Уинфилд Хилл

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍66🔥23144🆒1
〰️ Акустическая левитация — это метод взвешивания вещества в воздухе против силы тяжести с использованием давления акустического излучения от звуковых волн высокой интенсивности. Метод работает по тем же принципам, что и акустический пинцет, используя силы акустического излучения. Однако акустические пинцеты, как правило, представляют собой устройства небольшого размера, которые работают в текучей среде и в меньшей степени подвержены влиянию силы тяжести, тогда как акустическая левитация в первую очередь связана с преодолением силы тяжести.

Обычно используются звуковые волны на ультразвуковых частотах, таким образом, не создавая звука, слышимого людям. В первую очередь это связано с высокой интенсивностью звука, необходимой для противодействия силе тяжести. Однако были случаи использования слышимых частот.

Существуют различные методы генерации звука, но наиболее распространенным является использование пьезоэлектрических преобразователей, которые могут эффективно генерировать сигналы высокой амплитуды на желаемых частотах. Этим методом сложнее управлять, чем другими, такими как электромагнитная левитация, но его преимущество заключается в возможности левитации непроводящих материалов.

Хотя изначально акустическая левитация была статичной, она прошла путь от неподвижной левитации до динамического управления парящими объектами - способности, полезной в фармацевтической и электронной промышленности. Это динамическое управление было впервые реализовано с помощью прототипа с массивом квадратных акустических излучателей, похожих на шахматную доску, которые перемещают объект с одного квадрата на другой, медленно снижая интенсивность звука, излучаемого одним квадратом, при одновременном увеличении интенсивности звука из другого, позволяя объекту перемещаться практически вертикально вверх. Совсем недавно разработка плат преобразователей с фазированной антенной решеткой позволила более произвольно управлять несколькими частицами и каплями одновременно. Недавние достижения также привели к значительному снижению цены на эту технологию. «TinyLev» — это акустический левитатор, который может быть сконструирован из широко доступных недорогих готовых компонентов и одной рамки, напечатанной на 3D-принтере.

Первая демонстрация возможности акустической левитации была сделана в экспериментах с трубкой Кундта в 1866 году. Эксперимент в резонансной камере продемонстрировал, что частицы могут собираться в узлах стоячей волны силами акустического излучения. Однако первоначальный эксперимент проводился с целью расчета длин волн и, следовательно, скорости звука внутри газа.

Первая левитация была продемонстрирована Бюксом и Мюллером в 1933 году, которые левитировали капли спирта между кристаллом кварца и отражателем. Следующий шаг вперед был сделан Хилари Сент-Клер, которая интересовалась силами акустического излучения в первую очередь для их применения при агломерации частиц пыли для использования в горнодобывающей промышленности. Он создал первое электромагнитное устройство для создания амплитуд возбуждения, необходимых для левитации, затем перешел к левитации более крупных и тяжелых предметов, включая монету.

#физика #наука #science #physics #акустика #волны #опыты #эксперименты #видеоуроки

💡 Physics.Math.Code // @physics_lib
32615👍15🔥8❤‍🔥1
🧲 Магнитная передача по своей геометрии и функциям напоминает традиционную механическую передачу, в которой вместо зубьев используются магниты. Когда два противоположных магнита приближаются друг к другу, они отталкиваются; если их разместить на двух кольцах, магниты будут действовать как зубья. В отличие от обычной жёсткой контактной обратной связи в цилиндрической передаче, где шестерня может свободно вращаться до тех пор, пока не вступит в контакт со следующей шестернёй, магнитная передача имеет упругую обратную связь. В результате магнитные передачи способны оказывать давление независимо от относительного угла. Несмотря на то, что они обеспечивают такое же передаточное число, как и традиционная зубчатая передача, такие шестерни работают без соприкосновения и не подвержены износу сопрягаемых поверхностей, не шумят и могут проскальзывать без повреждений.

🧲 Магнитная муфта (или магнитный редуктор) представляет собой устройство для передачи вращательного момента между соосными (и не соосными) валами без механического контакта. Основу работы устройства составляют силы магнитного взаимодействия. Роторы разделены герметичным немагнитным экраном (воздушный зазор или стенка из немагнитного материала), что обеспечивает возможность передачи момента через физическое препятствие.

▪️ Синхронная магнитная муфта: Если на обоих роторах установлены постоянные магниты, их магнитные поля стремятся к состоянию с минимальной энергией, что соответствует взаимной ориентации разноименных полюсов. При вращении ведущего ротора его магнитное поле, воздействуя на поле ведомого ротора, создает вращающий момент, вызывающий синхронное вращение. Момент передачи прямо пропорционален градиенту магнитной энергии в воздушном зазоре.

▪️ Асинхронная магнитная муфта (Индукционная): Если ведомый ротор выполнен из немагнитного материала с высокой электропроводностью (например, меди или алюминия), то вращающееся магнитное поле ведущего ротора индуцирует в нем вихревые токи (токи Фуко). Взаимодействие между магнитным полем ведущего ротора и этими индуцированными токами создает силу Лоренца, приводящую ведомый ротор во вращение. При этом возникает скольжение — ведомый ротор отстает по частоте вращения от ведущего, что является необходимым условием для возникновения вращающего момента.

⚙️ Магнитный редуктор является развитием принципа магнитной муфты. Он содержит, как минимум, три ротора с различным количеством пар полюсов (p). Отношение чисел пар полюсов на роторах определяет передаточное отношение по формуле, аналогичной для механических редукторов. Момент передается за счет гармонического взаимодействия магнитных полей, создаваемых магнитами роторов с разным шагом. Таким образом, работа магнитной муфты и редуктора основана на фундаментальных принципах магнитостатики и электромагнетизма: силовом взаимодействии постоянных магнитов или взаимодействии вращающегося магнитного поля с индуцированными в проводящей среде вихревыми токами. Отсутствие механического контакта обуславливает такие преимущества, как необслуживаемость, высокую надежность и абсолютную герметичность.

Редуктор с магнитной муфтой можно использовать в вакууме без смазки или при работе с герметичными барьерами. Это может быть преимуществом во взрывоопасных или других опасных средах, где утечки представляют реальную угрозу. Однако, стоит помнить, что при условиях, когда температура превышает точку Кюри, магнитные свойства теряются. Точка Кюри (или температура Кюри) — это критическая температура, выше которой ферромагнетик или ферримагнетик теряет свои спонтанные намагниченность и постоянные магнитные свойства, превращаясь в парамагнетик. Для наиболее распространенных марок неодимовых магнитов температура Кюри лежит в диапазоне от 310 °C до 400 °C. Потеря магнитных свойств при нагреве выше точки Кюри является необратимым процессом для стандартных магнитов. #видеоуроки #physics #физика #опыты #электродинамика #электричество #магнетизм #эксперименты #научные_фильмы

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1🔥3018👍14🤝43🥰1🤨1😭1
🔥 Этот обогреватель работает на «реактивной тяге» внутри себя 😖

Разберем физику обогревателя, в котором нет насоса, но который способен подсасывать топливо самостоятельно. Только огонь, медная трубка и хитрый закон физики, который заставляет топливо самотеком лететь в сопло. В чем фокус? Разбираем физику процесса

▪️ 1. Нагрев и расширение. Мы подносим источник огня (например, паяльную лампу) к началу полой медной трубки, свернутой в змеевик. Трубка быстро нагревается.

▪️ 2. Создание тяги. Воздух внутри нагретого участка трубки резко расширяется, его давление падает. Поскольку другой конец трубки опущен в емкость с топливом (например, соляркой или отработанным маслом), возникает разница давлений.

▪️ 3. Эффект эжекции (подсоса). Горячий воздух с большой скоростью вырывается из дальнего конца трубки. Этот быстрый поток создает зону низкого давления, которая, как мощный насос, начинает затягивать пары топлива из емкости и подсасывать новую порцию жидкости. Возникает что-то вроде реактивной струи, но внутри системы. Получается самоподдерживающаяся система: пламя нагревает трубку -> нагрев создает тягу -> тяга всасывает новое топливо -> топливо сгорает, поддерживая пламя.

⚙️ Как собрать эффективную конструкцию?

▫️Медная трубка: диаметром 6-10 мм, длиной 1.5-2 метра. Медь отлично проводит тепло.
▫️Емкость для топлива: металлическая, с герметичной, но не полностью закрытой крышкой (нужен байпас для подсоса воздуха).
▫️Основание: негорючее (кирпичи, металл).
▫️Топливо: хорошо подходит керосин, дизель (солярка) или отработанное моторное масло.

1. Форма змеевика. Сверните трубку в плотную спираль. Так площадь нагрева будет максимальной, и процесс парообразования пойдет интенсивнее.
2. Диаметр и длина. Слишком тонкая трубка может засориться, слишком толстая — будет плохо прогреваться. Длина должна быть достаточной для создания хорошей тяги, но не чрезмерной.
3. Положение «сопла». Выходной конец трубки должен быть направлен в зону горения. Это создаст замкнутый цикл: вырывающиеся газы будут поджигать всасываемое топливо, поддерживая стабильный факел.
4. Предварительный нагрев. Систему нужно запустить. Сначала вы прогреваете змеевик сторонним источником огня 30-60 секунд. Как только слышите характерное «шипение» и видите, как топливо начинает втягиваться в трубку, — процесс пошел! Источник огня можно убрать (но не всегда, зависит от конструкции).

💨 Принцип реактивного движения, используемый здесь, — это красивая демонстрация законов термодинамики и газодинамики. На практике такие системы капризны, но невероятно зрелищны и отлично показывают, как можно обойтись без сложной механики, используя лишь знание физики. Кто-нибудь собирал нечто подобное? Делитесь опытом . #видеоуроки #physics #физика #опыты #термодинамика #эксперименты #горение

🔥 Физика в чашке с водой

💨 Паровой или реактивный двигатель ?

🚀 Что будет, если добавить жидкий газ в бутылку с водой

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
3🔥17👍104🙈1