Physics.Math.Code
143K subscribers
5.2K photos
2.07K videos
5.81K files
4.46K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

№ 6045941532

Обратная связь: @physicist_i
Download Telegram
🧲 Магия, которую объясняет физика: Диамагнитная левитация ⚡️

Есть материалы, которые настолько «не любят» магнитные поля, что отталкиваются от них. Их называют диамагнетиками. В отличие от ферромагнетиков (железо, магнит), которые притягиваются, диамагнетики всегда выталкиваются из магнитного поля.
Когда диамагнетик помещают в сильное магнитное поле, в его атомах наводятся микроскопические токи, которые создают собственное магнитное поле, направленное строго против внешнего. Получается мини-война полей, и предмет парит!

🐸 Самый знаменитый пример — левитирующая лягушка (да, ученые действительно заставили лягушку парить в мощном пол соленоида!). Но для этого нужны огромные поля (соленоид с большим током при очень низких температурах и с индукцией около 10 Тл.)

Более доступный и красивый эксперимент, который вы могли видеть: магнит, левитирующий над сверхпроводником. Сверхпроводник в состоянии сверхпроводимости — идеальный диамагнетик, он выталкивает магнитное поле с огромной силой (эффект Мейснера).

А самый простой домашний эксперимент: графитовый стержень от карандаша, парящий над мощными неодимовыми магнитами, выстроенными в ряд. Графит — отличный диамагнетик! Сила отталкивания очень слаба. Чтобы поднять что-то тяжелое, нужны невероятно мощные магниты. Но для небольших объектов магия становится реальностью. Принцип: Под воздействием внешнего магнита в атомах диамагнетика возникают микротоки. Они создают свое поле, которое является полной противоположностью внешнему. Как два одинаковых полюса магнита, которые отталкиваются.

Элемент 83 (Висмут) является самым диамагнитным элементом. Здесь небольшой неодимовый магнит плавает между двумя 10-миллиметровыми кубами из 99% висмута, которые удерживаются в точной конфигурации за счет трения о параллельные стенки акриловой сборки. Диамагнитные вещества имеют собственные магнитные поля только тогда, когда они помещены во внешнее магнитное поле от другого источника — здесь крошечный кубический магнит создает поле. Диамагнитные поля довольно слабые, поэтому мощный цилиндрический неодимовый магнит расположен над кубами и отрегулирован так, чтобы помочь поднять крошечный кубический магнит против силы тяжести.

Охлаждение сверхпроводника жидким азотом способствует его следованию вдоль магнитной ленты (Эффект Мейсснера)

Диамагнетики: Это материалы, такие как пиролитический графит (сильный диамагнетик), медь, висмут, вода и даже человеческое тело.

Противодействие полю: Когда диамагнетик помещают в сильное внешнее магнитное поле (создаваемое неодимовыми магнитами), в материале индуцируются слабые токи. Эти токи создают собственное магнитное поле, которое всегда направлено противоположно внешнему полю.

Левитация: Возникает сила магнитного отталкивания, которая стремится вытолкнуть диамагнетик из области сильного магнитного поля в область более слабого. Если эта сила отталкивания становится больше, чем сила тяжести, действующая на объект, то объект левитирует.

Пиролитический графит — это один из самых сильных диамагнетиков при комнатной температуре, что делает его идеальным материалом для наглядной демонстрации левитации без использования дорогостоящих сверхпроводников или экстремально сильных магнитных полей.

Неодимовые Магниты (N-S-N-S-N): Служат для создания поля захвата (так называемой магнитной ловушки). Чередование полюсов (N-S-N-S-N) создает сильный градиент магнитного поля (резкое изменение напряженности поля). Именно градиент, а не просто сила поля, необходим для устойчивой левитации. Такая конфигурация магнитов удерживает тонкие пластины графита в устойчивом положении: они не могут выскользнуть из "ловушки" и парят, не требуя внешнего контроля или энергии (помимо силы магнитов).
#видеоуроки #physics #физика #опыты #электродинамика #электричество #магнетизм #эксперименты #научные_фильмы

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1🔥4817👍165❤‍🔥2
This media is not supported in your browser
VIEW IN TELEGRAM
🧲 Магнитная левитация волчка в потенциальной яме индукции внешнего магнитного поля 💤

Над платформой с магнитами (постоянными или катушками с током) раскручивают волчок, а затем убирают подставку — и он продолжает парить и крутиться в воздухе. Какая физика в основе?

▪️ 1. Магнитная левитация: В основании волчка и на подставке установлены сильные неодимовые магниты, обращенные друг к другу одноименными полюсами (север к северу или юг к югу). Они отталкиваются, создавая силу, направленную против гравитации. Этой силы как раз хватает, чтобы удерживать вес волчка в воздухе.

▪️ 2. Гироскопический эффект (стабилизация): Одного отталкивания мало. Если бы волчок не вращался, он бы просто перевернулся, так как положение «вверх тормашками» на отталкивающих магнитах неустойчиво. Но раскрученный волчок — это гироскоп. Гироскоп стремится сохранить ориентацию своей оси вращения в пространстве. Эта гироскопическая стабильность не дает волчку опрокинуться и заставляет его прецессировать вокруг магнитной оси, оставаясь в устойчивом парении.

📐 Особенности конструкции:
1. Сильные магниты: Обычно это неодимовые (NdFeB) магниты. От их силы зависит высота левитации.
2. Диамагнитный стабилизатор (секретный ингредиент): В самых стабильных конструкциях снизу часто устанавливают пластину из диамагнетика (например, пиролитического графита или меди). Диамагнетики слабо отталкиваются от любого магнитного поля. Эта пластина создает дополнительную «восстанавливающую силу», которая не дает волчку улететь в сторону и делает левитацию невероятно стабильной. Без нее волчок было бы очень сложно удержать в центре.
3. Идеальный вес и балансировка: Волчок должен быть идеально сбалансированным. Его вес должен в точности компенсироваться магнитной подъемной силой на определенной высоте.

👨‍🔬 Кто первый? Хотя подобные эффекты изучались и раньше, популяризатором именно этой элегантной демонстрации с волчком считается американский физик Рой Харриготен (Roy Harrigan), который запатентовал подобное устройство в начале 1980-х. Позже, в 2000-х, профессор Ларри Спир (Larry Spring) и знаменитый популяризатор науки Профессор Магги (Prof. Maggy) из Англии доработали и показали миру этот опыт в своих лекциях, сделав его вирусным. Парящий волчок — это не иллюзия, а физическая система, где магнитное отталкивание борется с гравитацией, а гироскопический эффект обеспечивает устойчивость. #видеоуроки #physics #физика #опыты #электродинамика #электричество #магнетизм #эксперименты #научные_фильмы

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍42🔥23226❤‍🔥2🤔1
Media is too big
VIEW IN TELEGRAM
⚡️ Самодельная зажигалка с дугой от батарейки на 3.7 V

Принцип работы основан на импульсном повышающем преобразователе . Можно использовать катушку индуктивности (повышающий трансформатор) для создания высоковольтного импульса, который пробивает воздушный зазор. Схема генерирует импульсы высокого напряжения (тысячи вольт), достаточные для создания болезненного удара током.

⚠️ Никогда не замыкайте выходные электроды напрямую. Это мгновенно выведет компоненты из строя. Используемая батарейка AAAA имеет небольшую емкость, но при коротком замыкании может сильно нагреться. Дуга имеет очень высокую температуру. Не прикасайтесь к ней и не направляйте на легковоспламеняющиеся материалы. Держите зажигалку так, чтобы дуга не касалась металлических частей плиты, чтобы избежать короткого замыкания.

По сути у нас схема блокинг-генератора на одном транзисторе. Это классическая и очень эффективная схема для таких задач. Опишем примерный принцип работы:
1. Ток от батареи течет через первичную обмотку катушки, открывая транзистор.
2. Магнитное поле в катушке накапливает энергию.
3. В определенный момент ток перестает расти, и поле начинает схлопываться.
4. Это схлопывание создает во вторичной (высоковольтной) обмотке короткий импульс высокого напряжения, который и создает дугу.

Необходимые компоненты:
1. Источник питания: 1 батарейка AAAA (3.7V)
2. Транзистор: NPN, желательно мощный и высоковольтный. Идеально подойдут: 2N3055 , MJE13007 , BD139, КТ815.
3. Резистор: 1 кОм (R1), мощностью 0.25 - 0.5 Вт.
4. Катушка индуктивности (сердечник): Лучше всего подойдет ферритовый стержень от старого радиоприемника. Можно разобрать ненужный импульсный трансформатор или дроссель.
5. Обмоточный провод:
— Первичная обмотка (толстая): Медный эмалированный провод диаметром 0.5 - 0.8 мм. Длина ~1 метр.
— Вторичная обмотка (тонкая): Медный эмалированный провод диаметром 0.1 - 0.2 мм. Длина ~5-10 метров.
6. Электроды: Два оголенных провода или кусочки вольфрамового электрода (идеально, так как они не обгорают). Можно использовать толстые канцелярские скрепки.
7. Корпус и монтаж: Монтажная плата или кусок текстолита, провода, кнопка без фиксации (опционально, но желательно для экономии батареи), термоусадка/изолента.
#физика #схемотехника #электродинамика #опыты #эксперименты #physics #видеоуроки #электроника #science

🔥 Свечение газов вблизи катушки Тесла

⚡️ Arduino в качестве управляющего элемента в большом станке — это возможно

💽 Самые массовые HDD Seagate ST-225

💥 Лазерное скальпирование микросхемы

📕 Основы микроэлектроники [2001] Степаненко И.П.

📘 Практикум начинающего радиолюбителя [1984] (2-е изд., перераб. и доп.) Борисов В.Г.

⚡️ Ионофон

📚 Искусство схемотехники, 4-е издание (в 3 томах) [1993—2014] Пауль Хоровиц, Уинфилд Хилл

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍63🔥21124🆒1
〰️ Акустическая левитация — это метод взвешивания вещества в воздухе против силы тяжести с использованием давления акустического излучения от звуковых волн высокой интенсивности. Метод работает по тем же принципам, что и акустический пинцет, используя силы акустического излучения. Однако акустические пинцеты, как правило, представляют собой устройства небольшого размера, которые работают в текучей среде и в меньшей степени подвержены влиянию силы тяжести, тогда как акустическая левитация в первую очередь связана с преодолением силы тяжести.

Обычно используются звуковые волны на ультразвуковых частотах, таким образом, не создавая звука, слышимого людям. В первую очередь это связано с высокой интенсивностью звука, необходимой для противодействия силе тяжести. Однако были случаи использования слышимых частот.

Существуют различные методы генерации звука, но наиболее распространенным является использование пьезоэлектрических преобразователей, которые могут эффективно генерировать сигналы высокой амплитуды на желаемых частотах. Этим методом сложнее управлять, чем другими, такими как электромагнитная левитация, но его преимущество заключается в возможности левитации непроводящих материалов.

Хотя изначально акустическая левитация была статичной, она прошла путь от неподвижной левитации до динамического управления парящими объектами - способности, полезной в фармацевтической и электронной промышленности. Это динамическое управление было впервые реализовано с помощью прототипа с массивом квадратных акустических излучателей, похожих на шахматную доску, которые перемещают объект с одного квадрата на другой, медленно снижая интенсивность звука, излучаемого одним квадратом, при одновременном увеличении интенсивности звука из другого, позволяя объекту перемещаться практически вертикально вверх. Совсем недавно разработка плат преобразователей с фазированной антенной решеткой позволила более произвольно управлять несколькими частицами и каплями одновременно. Недавние достижения также привели к значительному снижению цены на эту технологию. «TinyLev» — это акустический левитатор, который может быть сконструирован из широко доступных недорогих готовых компонентов и одной рамки, напечатанной на 3D-принтере.

Первая демонстрация возможности акустической левитации была сделана в экспериментах с трубкой Кундта в 1866 году. Эксперимент в резонансной камере продемонстрировал, что частицы могут собираться в узлах стоячей волны силами акустического излучения. Однако первоначальный эксперимент проводился с целью расчета длин волн и, следовательно, скорости звука внутри газа.

Первая левитация была продемонстрирована Бюксом и Мюллером в 1933 году, которые левитировали капли спирта между кристаллом кварца и отражателем. Следующий шаг вперед был сделан Хилари Сент-Клер, которая интересовалась силами акустического излучения в первую очередь для их применения при агломерации частиц пыли для использования в горнодобывающей промышленности. Он создал первое электромагнитное устройство для создания амплитуд возбуждения, необходимых для левитации, затем перешел к левитации более крупных и тяжелых предметов, включая монету.

#физика #наука #science #physics #акустика #волны #опыты #эксперименты #видеоуроки

💡 Physics.Math.Code // @physics_lib
31512👍8🔥6