Media is too big
VIEW IN TELEGRAM
Опыт, который демонстрирует, как электрическое поле взаимодействует с диэлектриками. На видео пластины плоского конденсатора опущены в воду, подключаем к ним высокое напряжение, и... вода сама втягивается в зазор!
Кажется, будто вода «прилипает» к пластинам. Но на самом деле её вталкивает туда сила, порожденная электрическим полем. Давайте разберемся почему.
▪️ 1. Вода – не просто проводник
Хотя вода с примесями проводит ток, в этом опыте ключевую роль играет ее диэлектрическая природа. Молекула воды (H₂O) – это диполь. У нее есть положительный полюс (со стороны атомов водорода) и отрицательный (со стороны атома кислорода). В обычном состоянии эти диполи хаотично ориентированы.
▪️ 2. Сила поля – главный мотиватор
Когда мы включаем напряжение, между пластинами конденсатора создается неоднородное электрическое поле: у краев пластин оно слабее, а в зазоре – значительно сильнее.
▪️ 3. Что делают молекулы-диполи?
Под действием поля диполи воды начинают ориентироваться – поворачиваются вдоль силовых линий: «плюсом» к отрицательной пластине, «минусом» – к положительной. Это явление называется поляризацией.
➕ Физика: Сила, действующая на концы диполя, не просто его поворачивает. Поскольку поле неоднородное (сильнее внутри конденсатора и слабее снаружи), сила, притягивающая «+» конец диполя к «-» пластине, будет чуть больше, чем сила, отталкивающая его «-» конец от той же пластины. В результате на каждую поляризованную молекулу воды действует результирующая сила, которая втягивает ее из области слабого поля в область сильного – то есть, прямо в зазор между пластинами! Диэлектрик (в нашем случае – вода) всегда стремится переместиться туда, где напряженность электрического поля максимальна. Именно эта сила и заставляет воду подниматься между пластинами, преодолевая силу тяжести и силы поверхностного натяжения.
Такой эффект наблюдается не только с водой, но и с другими жидкими диэлектриками (например, с керосином или маслом), и лежит в основе работы многих электростатических устройств. #physics #эксперименты #электродинамика #физика #видеоуроки #опыты #научные_фильмы #лекции
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍37🔥16❤15❤🔥4⚡1
Media is too big
VIEW IN TELEGRAM
На видео экстремальный DIY: самодельный сварочный аппарат, чье сердце — не трансформатор, а мощная батарея конденсаторов. Идея проста до гениальности: мы накапливаем в конденсаторах огромное количество энергии, а затем разряжаем ее за доли секунды на металл, который нужно сварить.
Физика процесса:
1. Накопление энергии: По формуле
E = (C ⋅ U²) / 2
, где E
— энергия в Джоулях, C
— емкость в Фарадах, U
— напряжение в Вольтах. К примеру, батарея на 100 000 мкФ (0,1 Ф), заряженная до 50 В, запасает (0.1 ⋅ 50²)/2 = 125 Дж
. Это сравнимо с ударом молотка, но сосредоточено в крошечной точке! 2. Мгновенный разряд: Вся эта энергия высвобождается почти мгновенно. Сила тока при коротком замыкании может достигать сотен и даже тысяч Ампер! Здесь вступает в дело Закон Джоуля-Ленца:
Q = I² ⋅ R ⋅ t
. Мощность нагрева (I²⋅R
) колоссальна из-за гигантского тока I и мизерного времени t.3. Почему металл плавится? В точке контакта сопротивление R максимально. Огромный ток, проходя через него, вызывает интенсивный нагрев, мгновенно расплавляя металл и создавая сварочную точку.
💥 Этот метод — кустарная реализация промышленной контактной сварки, изобретенной в далеком 1877 году американцем Элиху Томсоном. Любопытно, что Томсон изначально поспорил с коллегой, что сможет сварить два куска металла. Он пропустил через них ток от динамо-машины и, сдвинув их, получил прочное соединение. Его установка была прямым предком нашего сегодняшнего эксперимента.
▪️Конденсаторы: Идеальны — электролитические, с низким ESR (эквивалентным последовательным сопротивлением), рассчитанные на высокое напряжение (например, от компьютерных блоков питания, но лучше — специальные мощные).
▪️Зарядное устройство: Нужен источник питания, способный безопасно зарядить батарею до нужного напряжения.
▪️Электроды: Обычно используют мощные медные щупы или стержни. Медь обладает низким сопротивлением и не прилипает к свариваемому металлу.
▪️Управление: Вся система должна управляться через реле или мощный ключ (например, MOSFET/IGBT) для безопасности оператора.
Собрать такой аппарат — это как провести урок электродинамики у себя в гараже. Это наглядная демонстрация того, как потенциальная энергия электрического поля превращается в тепловую мощь, способную плавить сталь. А вы пробовали такое изобретать? #видеоуроки #physics #физика #опыты #электродинамика #электричество #магнетизм #эксперименты #научные_фильмы
⚡️ Опыты Фарадея
🔥 Индукционный нагрев
💫 «Гроб Мухаммеда»
🧲 Как работают трансформаторы?
⚡️ Основные физические понятия электродинамики (Леннаучфильм)
✨ Взаимодействие зарядов. Электростатическая индукция
💫 Исследование электрических полей. Опыт по физике
⚡️ Уравнения Максвелла ✨
⚙️ Электромагнитная подвеска 🧲
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥42❤24👍21⚡4🤯2❤🔥1🤩1😍1🤨1
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
🧲 Магия, которую объясняет физика: Диамагнитная левитация ⚡️
Есть материалы, которые настолько «не любят» магнитные поля, что отталкиваются от них. Их называют диамагнетиками. В отличие от ферромагнетиков (железо, магнит), которые притягиваются, диамагнетики всегда выталкиваются из магнитного поля.
Когда диамагнетик помещают в сильное магнитное поле, в его атомах наводятся микроскопические токи, которые создают собственное магнитное поле, направленное строго против внешнего. Получается мини-война полей, и предмет парит!
🐸 Самый знаменитый пример — левитирующая лягушка (да, ученые действительно заставили лягушку парить в мощном пол соленоида!). Но для этого нужны огромные поля (соленоид с большим током при очень низких температурах и с индукцией около 10 Тл.)
Более доступный и красивый эксперимент, который вы могли видеть: магнит, левитирующий над сверхпроводником. Сверхпроводник в состоянии сверхпроводимости — идеальный диамагнетик, он выталкивает магнитное поле с огромной силой (эффект Мейснера).
А самый простой домашний эксперимент: графитовый стержень от карандаша, парящий над мощными неодимовыми магнитами, выстроенными в ряд. Графит — отличный диамагнетик! Сила отталкивания очень слаба. Чтобы поднять что-то тяжелое, нужны невероятно мощные магниты. Но для небольших объектов магия становится реальностью. Принцип: Под воздействием внешнего магнита в атомах диамагнетика возникают микротоки. Они создают свое поле, которое является полной противоположностью внешнему. Как два одинаковых полюса магнита, которые отталкиваются.
Элемент 83 (Висмут) является самым диамагнитным элементом. Здесь небольшой неодимовый магнит плавает между двумя 10-миллиметровыми кубами из 99% висмута, которые удерживаются в точной конфигурации за счет трения о параллельные стенки акриловой сборки. Диамагнитные вещества имеют собственные магнитные поля только тогда, когда они помещены во внешнее магнитное поле от другого источника — здесь крошечный кубический магнит создает поле. Диамагнитные поля довольно слабые, поэтому мощный цилиндрический неодимовый магнит расположен над кубами и отрегулирован так, чтобы помочь поднять крошечный кубический магнит против силы тяжести.
✨ Охлаждение сверхпроводника жидким азотом способствует его следованию вдоль магнитной ленты (Эффект Мейсснера)
Диамагнетики: Это материалы, такие как пиролитический графит (сильный диамагнетик), медь, висмут, вода и даже человеческое тело.
Противодействие полю: Когда диамагнетик помещают в сильное внешнее магнитное поле (создаваемое неодимовыми магнитами), в материале индуцируются слабые токи. Эти токи создают собственное магнитное поле, которое всегда направлено противоположно внешнему полю.
Левитация: Возникает сила магнитного отталкивания, которая стремится вытолкнуть диамагнетик из области сильного магнитного поля в область более слабого. Если эта сила отталкивания становится больше, чем сила тяжести, действующая на объект, то объект левитирует.
Пиролитический графит — это один из самых сильных диамагнетиков при комнатной температуре, что делает его идеальным материалом для наглядной демонстрации левитации без использования дорогостоящих сверхпроводников или экстремально сильных магнитных полей.
Неодимовые Магниты (N-S-N-S-N): Служат для создания поля захвата (так называемой магнитной ловушки). Чередование полюсов (N-S-N-S-N) создает сильный градиент магнитного поля (резкое изменение напряженности поля). Именно градиент, а не просто сила поля, необходим для устойчивой левитации. Такая конфигурация магнитов удерживает тонкие пластины графита в устойчивом положении: они не могут выскользнуть из "ловушки" и парят, не требуя внешнего контроля или энергии (помимо силы магнитов).
#видеоуроки #physics #физика #опыты #электродинамика #электричество #магнетизм #эксперименты #научные_фильмы
💡 Physics.Math.Code // @physics_lib
Есть материалы, которые настолько «не любят» магнитные поля, что отталкиваются от них. Их называют диамагнетиками. В отличие от ферромагнетиков (железо, магнит), которые притягиваются, диамагнетики всегда выталкиваются из магнитного поля.
Когда диамагнетик помещают в сильное магнитное поле, в его атомах наводятся микроскопические токи, которые создают собственное магнитное поле, направленное строго против внешнего. Получается мини-война полей, и предмет парит!
Более доступный и красивый эксперимент, который вы могли видеть: магнит, левитирующий над сверхпроводником. Сверхпроводник в состоянии сверхпроводимости — идеальный диамагнетик, он выталкивает магнитное поле с огромной силой (эффект Мейснера).
А самый простой домашний эксперимент: графитовый стержень от карандаша, парящий над мощными неодимовыми магнитами, выстроенными в ряд. Графит — отличный диамагнетик! Сила отталкивания очень слаба. Чтобы поднять что-то тяжелое, нужны невероятно мощные магниты. Но для небольших объектов магия становится реальностью. Принцип: Под воздействием внешнего магнита в атомах диамагнетика возникают микротоки. Они создают свое поле, которое является полной противоположностью внешнему. Как два одинаковых полюса магнита, которые отталкиваются.
Элемент 83 (Висмут) является самым диамагнитным элементом. Здесь небольшой неодимовый магнит плавает между двумя 10-миллиметровыми кубами из 99% висмута, которые удерживаются в точной конфигурации за счет трения о параллельные стенки акриловой сборки. Диамагнитные вещества имеют собственные магнитные поля только тогда, когда они помещены во внешнее магнитное поле от другого источника — здесь крошечный кубический магнит создает поле. Диамагнитные поля довольно слабые, поэтому мощный цилиндрический неодимовый магнит расположен над кубами и отрегулирован так, чтобы помочь поднять крошечный кубический магнит против силы тяжести.
Диамагнетики: Это материалы, такие как пиролитический графит (сильный диамагнетик), медь, висмут, вода и даже человеческое тело.
Противодействие полю: Когда диамагнетик помещают в сильное внешнее магнитное поле (создаваемое неодимовыми магнитами), в материале индуцируются слабые токи. Эти токи создают собственное магнитное поле, которое всегда направлено противоположно внешнему полю.
Левитация: Возникает сила магнитного отталкивания, которая стремится вытолкнуть диамагнетик из области сильного магнитного поля в область более слабого. Если эта сила отталкивания становится больше, чем сила тяжести, действующая на объект, то объект левитирует.
Пиролитический графит — это один из самых сильных диамагнетиков при комнатной температуре, что делает его идеальным материалом для наглядной демонстрации левитации без использования дорогостоящих сверхпроводников или экстремально сильных магнитных полей.
Неодимовые Магниты (N-S-N-S-N): Служат для создания поля захвата (так называемой магнитной ловушки). Чередование полюсов (N-S-N-S-N) создает сильный градиент магнитного поля (резкое изменение напряженности поля). Именно градиент, а не просто сила поля, необходим для устойчивой левитации. Такая конфигурация магнитов удерживает тонкие пластины графита в устойчивом положении: они не могут выскользнуть из "ловушки" и парят, не требуя внешнего контроля или энергии (помимо силы магнитов).
#видеоуроки #physics #физика #опыты #электродинамика #электричество #магнетизм #эксперименты #научные_фильмы
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1🔥46❤17👍16⚡5❤🔥2
This media is not supported in your browser
VIEW IN TELEGRAM
🧲 Магнитная левитация волчка в потенциальной яме индукции внешнего магнитного поля 💤
Над платформой с магнитами (постоянными или катушками с током) раскручивают волчок, а затем убирают подставку — и он продолжает парить и крутиться в воздухе. Какая физика в основе?
▪️ 1. Магнитная левитация: В основании волчка и на подставке установлены сильные неодимовые магниты, обращенные друг к другу одноименными полюсами (север к северу или юг к югу). Они отталкиваются, создавая силу, направленную против гравитации. Этой силы как раз хватает, чтобы удерживать вес волчка в воздухе.
▪️ 2. Гироскопический эффект (стабилизация): Одного отталкивания мало. Если бы волчок не вращался, он бы просто перевернулся, так как положение «вверх тормашками» на отталкивающих магнитах неустойчиво. Но раскрученный волчок — это гироскоп. Гироскоп стремится сохранить ориентацию своей оси вращения в пространстве. Эта гироскопическая стабильность не дает волчку опрокинуться и заставляет его прецессировать вокруг магнитной оси, оставаясь в устойчивом парении.
📐 Особенности конструкции:
1. Сильные магниты: Обычно это неодимовые (NdFeB) магниты. От их силы зависит высота левитации.
2. Диамагнитный стабилизатор (секретный ингредиент): В самых стабильных конструкциях снизу часто устанавливают пластину из диамагнетика (например, пиролитического графита или меди). Диамагнетики слабо отталкиваются от любого магнитного поля. Эта пластина создает дополнительную «восстанавливающую силу», которая не дает волчку улететь в сторону и делает левитацию невероятно стабильной. Без нее волчок было бы очень сложно удержать в центре.
3. Идеальный вес и балансировка: Волчок должен быть идеально сбалансированным. Его вес должен в точности компенсироваться магнитной подъемной силой на определенной высоте.
👨🔬 Кто первый? Хотя подобные эффекты изучались и раньше, популяризатором именно этой элегантной демонстрации с волчком считается американский физик Рой Харриготен (Roy Harrigan), который запатентовал подобное устройство в начале 1980-х. Позже, в 2000-х, профессор Ларри Спир (Larry Spring) и знаменитый популяризатор науки Профессор Магги (Prof. Maggy) из Англии доработали и показали миру этот опыт в своих лекциях, сделав его вирусным. Парящий волчок — это не иллюзия, а физическая система, где магнитное отталкивание борется с гравитацией, а гироскопический эффект обеспечивает устойчивость. #видеоуроки #physics #физика #опыты #электродинамика #электричество #магнетизм #эксперименты #научные_фильмы
💡 Physics.Math.Code // @physics_lib
Над платформой с магнитами (постоянными или катушками с током) раскручивают волчок, а затем убирают подставку — и он продолжает парить и крутиться в воздухе. Какая физика в основе?
▪️ 1. Магнитная левитация: В основании волчка и на подставке установлены сильные неодимовые магниты, обращенные друг к другу одноименными полюсами (север к северу или юг к югу). Они отталкиваются, создавая силу, направленную против гравитации. Этой силы как раз хватает, чтобы удерживать вес волчка в воздухе.
▪️ 2. Гироскопический эффект (стабилизация): Одного отталкивания мало. Если бы волчок не вращался, он бы просто перевернулся, так как положение «вверх тормашками» на отталкивающих магнитах неустойчиво. Но раскрученный волчок — это гироскоп. Гироскоп стремится сохранить ориентацию своей оси вращения в пространстве. Эта гироскопическая стабильность не дает волчку опрокинуться и заставляет его прецессировать вокруг магнитной оси, оставаясь в устойчивом парении.
📐 Особенности конструкции:
1. Сильные магниты: Обычно это неодимовые (NdFeB) магниты. От их силы зависит высота левитации.
2. Диамагнитный стабилизатор (секретный ингредиент): В самых стабильных конструкциях снизу часто устанавливают пластину из диамагнетика (например, пиролитического графита или меди). Диамагнетики слабо отталкиваются от любого магнитного поля. Эта пластина создает дополнительную «восстанавливающую силу», которая не дает волчку улететь в сторону и делает левитацию невероятно стабильной. Без нее волчок было бы очень сложно удержать в центре.
3. Идеальный вес и балансировка: Волчок должен быть идеально сбалансированным. Его вес должен в точности компенсироваться магнитной подъемной силой на определенной высоте.
👨🔬 Кто первый? Хотя подобные эффекты изучались и раньше, популяризатором именно этой элегантной демонстрации с волчком считается американский физик Рой Харриготен (Roy Harrigan), который запатентовал подобное устройство в начале 1980-х. Позже, в 2000-х, профессор Ларри Спир (Larry Spring) и знаменитый популяризатор науки Профессор Магги (Prof. Maggy) из Англии доработали и показали миру этот опыт в своих лекциях, сделав его вирусным. Парящий волчок — это не иллюзия, а физическая система, где магнитное отталкивание борется с гравитацией, а гироскопический эффект обеспечивает устойчивость. #видеоуроки #physics #физика #опыты #электродинамика #электричество #магнетизм #эксперименты #научные_фильмы
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍40🔥22❤19⚡6❤🔥2🤔1
Media is too big
VIEW IN TELEGRAM
Принцип работы основан на импульсном повышающем преобразователе . Можно использовать катушку индуктивности (повышающий трансформатор) для создания высоковольтного импульса, который пробивает воздушный зазор. Схема генерирует импульсы высокого напряжения (тысячи вольт), достаточные для создания болезненного удара током.
⚠️ Никогда не замыкайте выходные электроды напрямую. Это мгновенно выведет компоненты из строя. Используемая батарейка AAAA имеет небольшую емкость, но при коротком замыкании может сильно нагреться. Дуга имеет очень высокую температуру. Не прикасайтесь к ней и не направляйте на легковоспламеняющиеся материалы. Держите зажигалку так, чтобы дуга не касалась металлических частей плиты, чтобы избежать короткого замыкания.
По сути у нас схема блокинг-генератора на одном транзисторе. Это классическая и очень эффективная схема для таких задач. Опишем примерный принцип работы:
1. Ток от батареи течет через первичную обмотку катушки, открывая транзистор.
2. Магнитное поле в катушке накапливает энергию.
3. В определенный момент ток перестает расти, и поле начинает схлопываться.
4. Это схлопывание создает во вторичной (высоковольтной) обмотке короткий импульс высокого напряжения, который и создает дугу.
Необходимые компоненты:
1. Источник питания: 1 батарейка AAAA (3.7V)
2. Транзистор: NPN, желательно мощный и высоковольтный. Идеально подойдут: 2N3055 , MJE13007 , BD139, КТ815.
3. Резистор: 1 кОм (R1), мощностью 0.25 - 0.5 Вт.
4. Катушка индуктивности (сердечник): Лучше всего подойдет ферритовый стержень от старого радиоприемника. Можно разобрать ненужный импульсный трансформатор или дроссель.
5. Обмоточный провод:
— Первичная обмотка (толстая): Медный эмалированный провод диаметром 0.5 - 0.8 мм. Длина ~1 метр.
— Вторичная обмотка (тонкая): Медный эмалированный провод диаметром 0.1 - 0.2 мм. Длина ~5-10 метров.
6. Электроды: Два оголенных провода или кусочки вольфрамового электрода (идеально, так как они не обгорают). Можно использовать толстые канцелярские скрепки.
7. Корпус и монтаж: Монтажная плата или кусок текстолита, провода, кнопка без фиксации (опционально, но желательно для экономии батареи), термоусадка/изолента.
#физика #схемотехника #электродинамика #опыты #эксперименты #physics #видеоуроки #электроника #science
🔥 Свечение газов вблизи катушки Тесла
⚡️ Arduino в качестве управляющего элемента в большом станке — это возможно
💽 Самые массовые HDD Seagate ST-225
📕 Основы микроэлектроники [2001] Степаненко И.П.
📘 Практикум начинающего радиолюбителя [1984] (2-е изд., перераб. и доп.) Борисов В.Г.
⚡️ Ионофон
📚 Искусство схемотехники, 4-е издание (в 3 томах) [1993—2014] Пауль Хоровиц, Уинфилд Хилл
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍22🔥7❤6⚡1🆒1