Physics.Math.Code
142K subscribers
5.2K photos
2.03K videos
5.81K files
4.43K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

№ 6045941532

Обратная связь: @physicist_i
Download Telegram
💤 Римановская геометрия: Когда прямая — это не самый короткий путь 🌐

Привыкли к Евклиду, где параллельные не пересекаются, а сумма углов треугольника — 180°? Забудьте на минуту. Римановская геометрия — это мир, где пространство само по себе может быть искривленным. Представьте, что вы — муравей, ползущий по поверхности апельсина. Вам кажется, что вы движетесь по прямой, но на самом деле ваш путь изгибается вместе с кожурой. Это и есть основа идей Бернхарда Римана: геометрия определяется самой поверхностью (пространством), а не навязана ей извне. Потому что пространство искривлено. И всё зависит от текущей абстракции.

Почему это не просто абстракция? Это наша Вселенная.

Общая теория относительности Эйнштейна — самое знаменитое применение римановой геометрии. Массивные объекты, такие как звёзды и планеты, искривляют пространство-время вокруг себя. Свет, движущийся «прямо», огибает их — именно так в 1919 году было получено первое подтверждение ОТО. А теперь немного малоизвестных фактов.

▪️ Факт 1: Треугольник с тремя прямыми углами.
На сфере можно построить треугольник, у которого все три угла — прямые (90°). Просто «пройдите» от экватора по нулевому меридиану до Северного полюса, поверните на 90° и спуститесь по 90-му меридиану обратно к экватору. Сумма углов = 270°.

▪️ Факт 2: Всё гениальное — не положительно.
Кривизна поверхности бывает не только положительной (как у сферы), но и отрицательной (как у седла — гиперболической параболоид). В таком мире через одну точку можно провести бесконечно много «прямых» (геодезических), не пересекающих данную линию. И сумма углов треугольника будет меньше 180°.

▪️ Факт 3: Теорема о «залысине» или «Теорема о причёсывании ежа»
Одно из самых элегантных следствий — Теорема Гаусса-Бонне. Грубо говоря, она связывает локальную кривизну поверхности с её глобальной топологией. Например, если вы будете гладить волосатый кокос (где «волосы» — это векторы), то как бы вы ни водили рукой, всегда останется хотя бы один «вихор» — точка, где кривизна не позволяет волосам лежать гладко. Это доказывает, что сферу нельзя сделать плоской, не разрывая её. На сфере (или любой другой поверхности, топологически эквивалентной сфере) невозможно гладко причесать "волосяное поле" без образования хотя бы одного вихря (или "залысины").

▪️ Факт 4: Наша Вселенная может быть конечной, но без границ.
Как и поверхность Земли конечна, но у неё нет края, так и наша 3D-Вселенная, согласно некоторым гипотезам, может быть аналогом 3-сферы — конечным объёмом, но без границ. Если бы вы полетели на космическом корабле «прямо», в итоге вы вернулись бы с обратной стороны.

Риманова геометрия — это не про заумные формулы. Это про новый язык, описывающий саму ткань реальности. От навигации GPS (где учитывается кривизна Земли) до квантовой гравитации и струнной теории — эта математика рисует карту мира, который куда причудливее и интереснее, чем нам кажется. Стол, на котором лежит ваша клавиатура или ноутбук, тоже обладает римановой геометрией. Просто его кривизна равна нулю. #математика #mathematics #animation #math #геометрия #geometry #gif

⚙️ Красота параметрических графиков — трохоида

Красота параметрических кривых

⭕️ Точки пересечения кругов на воде движутся по гиперболе

🕑 Экстремальная задача на смекалку

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6646🔥22🤯53🤔1💯1
〽️ Непрерывная везде, но не дифференцируемая нигде: визуализация функции Вейерштрасса!

В давнюю эпоху математики во многом вдохновлялись природой. Когда Ньютон разрабатывал математический анализ, он в первую очередь вдохновлялся физическим миром: траекториями планет, колебаниями маятника, движением падающего фрукта. Такое мышление привело к возникновению геометрической интуиции относительно математических структур. Они должны были иметь такой же смысл, что и физический объект. В результате этого многие математики сосредоточились на изучении «непрерывных» функций.

Но в 1860-х появились слухи о странном существе — математической функции, противоречившей теореме Ампера. В Германии великий Бернхард Риман рассказывал своим студентам, что знает непрерывную функцию, не имеющую гладких частей, и для которой невозможно вычислить производную функции в любой точке. Риман не опубликовал доказательств, как и Шарль Селлерье из Женевского университета, который писал, что обнаружил что-то «очень важное и, как мне кажется, новое», однако спрятал свои работы в папку, ставшую достоянием общественности только после его смерти несколько десятков лет спустя. Однако если бы его заявлениям поверили, то это означало бы угрозу самым основам зарождавшегося математического анализа. Это существо угрожало разрушить счастливую дружбу между математической теорией и физическими наблюдениями, на которых она была основана. Матанализ всегда был языком планет и звёзд, но как может природа быть надёжным источником вдохновения, если найдутся математические функции, противоречащие основной её сути?

Чудовище окончательно родилось в 1872 году, когда Карл Вейерштрасс объявил, что нашёл функцию, являющуюся непрерывной, но не гладкой во всех точках. Он создал её, сложив вместе бесконечно длинный ряд функций косинуса:

f(x) = cos(3x𝝅)/2 + cos(3²x𝝅)/2² + cos(3³x𝝅)/2³ + ...


Как функция она была уродливой и отвратительной. Было даже непонятно, как она будет выглядеть на графике. Но Вейерштрасса это не волновало. Его доказательство состояло не из форм, а из уравнений, и именно это делало его заявление таким мощным. Он не только создал чудовище, но и построил его на железной логике. Он взял собственное новое строгое определение производной и доказал, что для этой новой функции её вычислить невозможно. #математика #mathematics #animation #math #геометрия #geometry #gif #maths #видеоуроки #научные_фильмы #математический_анализ

💡 Physics.Math.Code // @physics_lib
👍4023🔥12🤯3