Physics.Math.Code
143K subscribers
5.2K photos
2.07K videos
5.81K files
4.46K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

№ 6045941532

Обратная связь: @physicist_i
Download Telegram
😠 Резонанс в тибетской чаше: почему вода «закипает»?

Это магическое зрелище: водишь деревянным стиком по краю тибетской чаши, а внутри спокойная вода вдруг начинает бурлить, будто вскипела! 🫧 Но так ли это на самом деле? Давайте разбираться с точки зрения физики.
Короткий ответ: Нет, вода не кипит. Её температура не меняется. А вот что происходит на самом деле — это чистой воды резонанс и стоячие волны.

🎻 Что такое резонанс? Представьте, что вы раскачиваете кого-то на качелях. Если толкать в самый подходящий момент (в такт), качели будут взлетать все выше и выше. Это и есть резонанс — резкое возрастание амплитуды колебаний системы, когда на нее воздействуют с ее собственной частотой. Тибетская чаша — это не просто металлическая посудина, а идеальный резонатор. У нее, как у колокола, есть своя собственная (резонансная) частота колебаний.

Что происходит, когда мы водим стиком?

1. Создание колебаний: Трение стика о край чаши (часто с босом — специальной палочкой) передает ей энергию. Вы заставляете стенки чаши вибрировать с определенной частотой.
2. Поиск резонанса: Когда скорость и давление трения подобраны правильно, вы «ловите» резонансную частоту чаши. Чаша начинает вибрировать особенно интенсивно, издавая тот самый гудящий звук и заметно вибрируя.
3. Передача энергии воде: Эти мощные механические колебания от стенок чаши передаются воде, налитой на дно.

Вода — это жидкость, и она прекрасно передает колебания. Но что мы видим?
▪️Стоячие волны: На поверхности воды образуются не обычные волны, а стоячие волны. Это такие волны, которые осциллируют на месте. У них есть неподвижные точки (узлы) и точки с максимальной амплитудой (пучности).
▪️Кавитация: Иногда колебания настолько сильные, что в некоторых точках волны давление резко падает. Это приводит к явлению под названием кавитация — образованию крошечных пузырьков пара и газа, которые тут же схлопываются. Именно эти лопающиеся пузырьки и создают эффект бурления и «кипения», хотя вода остается холодной!

Итог в виде фактов:
〰️ Вода НЕ кипит в смысле нагревания до 100°C.
〰️ Эффект «кипения» — это холодный процесс, вызванный мощными механическими колебаниями.
〰️ Явление основано на резонансе и образовании стоячих волн.
〰️ Пузырьки — это в основном результат кавитации.

Это прекрасный пример того, как законы физики создают почти магические зрелища. #физика #резонанс #кавитация #волны #наука #physics #science #standingwave #cavitation

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
58👍3735❤‍🔥7🔥4👏2🌚2
This media is not supported in your browser
VIEW IN TELEGRAM
🌪 Теория относительности — это комплекс из двух теорий, которые описывают свойства пространства, времени и гравитации. Они были предложены Альбертом Эйнштейном в начале XX века. Смотреть полный фильм: 🕰 Что такое теория относительности [20 мин фильм]

▪️ Специальная теория относительности. Описывает поведение объектов, которые движутся с постоянной скоростью. Теория утверждает, что время и пространство не являются абсолютно фиксированными для всех наблюдателей — они могут изменяться в зависимости от скорости объекта. Некоторые принципы специальной теории относительности:
— Принцип относительности — законы физики одинаковы для всех наблюдателей, независимо от того, находятся ли они в покое или движутся с постоянной скоростью относительно других объектов.
— Постоянство скорости света — скорость света всегда одинаковая (примерно 300 000 км/с) и не зависит от того, как быстро движется источник света или наблюдатель.

▫️ Общая теория относительности. Расширяет идеи специальной теории относительности и объясняет гравитацию. Теория утверждает, что гравитация — это не сила, а искривление пространства-времени, вызванное массой и энергией объектов. Некоторые принципы общей теории относительности:
— Эквивалентность гравитации и ускорения — невозможно отличить действие гравитации от ускоренного движения.
— Гравитационное замедление времени — часы идут медленнее вблизи массивных объектов, например, рядом с чёрной дырой время почти останавливается. #физика #теория_относительности #оптика #опыты #эксперименты #physics #видеоуроки #научные_фильмы #свет #волны #СТО #ОТО #science

🖥 Против теории относительности и Эйнштейна // Алексей Семихатов, Владимир Сурдин / Вселенная Плюс

👨🏻‍💻 Видеолекции по теории поля и СТО [Часть 1]

👨🏻‍💻 Видеолекции по теории поля и СТО [Часть 2]

📚 3 книги по теории относительности

☀️ Физика света / The Physics of Light [2014]

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
40👍338🔥6❤‍🔥4🤯3🙈2😭1
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 Сравнение скорости движения пули и скорости разрушения стекла

Когда разбивается стекло, трещина распространяется со скоростью 4828 км/ч. Такую скорость невозможно заметить обычным взглядом, только с помощью высокоскоростной съёмки. Стекло разбивается со скоростью несколько тысяч метров в секунду. Пуля, выпущенная из автомата, например, АК-47 или винтовки НАТО G3, имеет меньшую скорость – до тысячи метров в секунду. #видеоуроки #механика #разрушения #колебания #волны #физика #physics

📚 Механика разрушений [12 книг]

⛓️ ⚙️ Механика разрушения материалов (видео)

💡 Physics.Math.Code // @physics_lib
4👍63🔥2911🤯51
This media is not supported in your browser
VIEW IN TELEGRAM
Можно ли поставить дом на шары, чтобы спасти его от землетрясения? 🏠

Почему простые шары не сработают? Представьте дом на четырех бильярдных шарах. Проблемы:
→ Они могут выкатиться в сторону.
→ Давление в точке контакта огромно, и шар просто продавит пол.
→ Любой порыв ветра заставит дом качаться.

А что тогда сработает? Инженеры давно разработали системы, которые отделяют здание от вибраций при землетрясениях. Это как поставить дом на "амортизаторы".

1. Сейсмические изоляторы (Сейсмоизоляция):
Маятниковые изоляторы: Представьте не шар, а огромную "линзу", внутри которой стальной шар качается по специальной чаше. При землетрясении здание плавно "раскачивается" на этой чаше, как маятник, гася энергию.
Слинговые изоляторы: Здесь используются опорные конструкции, работающие на растяжение, которые позволяют зданию качаться в определенных пределах.
Рельсовые системы: Здание устанавливается на специальные рельсы, позволяя ему смещаться при подземных толчках.

2. Сейсмические гасители (Демпферы). Если изоляторы — это "подвеска", то демпферы — это "тормоза". Их ставят внутри здания, чтобы поглощать энергию колебаний. Бывают:
Вязкостные: Как гигантские амортизаторы в автомобиле.
Массовые (динамические гасители): Огромный шар или маятник на верхних этажах, который раскачивается в противофазе основным колебаниям и гасит их. Знаменитый Тайбэй 101 использует такой 660-тонный шар!

3. Сейсмические компенсаторы (Тросовые системы)
Системы стальных тросов и растяжек, которые перераспределяют нагрузку и не дают зданию сложиться, как карточный домик.

Идея "катящейся опоры" — гениальна в своей основе, и инженеры воплотили ее в жизнь, создав сложные и надежные системы сейсмической изоляции. Благодаря им современные здания в сейсмоопасных зонах могут пережить даже очень сильные толчки, сохранив жизни людей и свою целостность. #землетрясение #строительство #инженерия #технологии #геология #архитектура #механика #разрушения #колебания #волны #физика #physics #эксперименты

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍5623🔥21😱3🗿2❤‍🔥11
〰️ Акустическая левитация — это метод взвешивания вещества в воздухе против силы тяжести с использованием давления акустического излучения от звуковых волн высокой интенсивности. Метод работает по тем же принципам, что и акустический пинцет, используя силы акустического излучения. Однако акустические пинцеты, как правило, представляют собой устройства небольшого размера, которые работают в текучей среде и в меньшей степени подвержены влиянию силы тяжести, тогда как акустическая левитация в первую очередь связана с преодолением силы тяжести.

Обычно используются звуковые волны на ультразвуковых частотах, таким образом, не создавая звука, слышимого людям. В первую очередь это связано с высокой интенсивностью звука, необходимой для противодействия силе тяжести. Однако были случаи использования слышимых частот.

Существуют различные методы генерации звука, но наиболее распространенным является использование пьезоэлектрических преобразователей, которые могут эффективно генерировать сигналы высокой амплитуды на желаемых частотах. Этим методом сложнее управлять, чем другими, такими как электромагнитная левитация, но его преимущество заключается в возможности левитации непроводящих материалов.

Хотя изначально акустическая левитация была статичной, она прошла путь от неподвижной левитации до динамического управления парящими объектами - способности, полезной в фармацевтической и электронной промышленности. Это динамическое управление было впервые реализовано с помощью прототипа с массивом квадратных акустических излучателей, похожих на шахматную доску, которые перемещают объект с одного квадрата на другой, медленно снижая интенсивность звука, излучаемого одним квадратом, при одновременном увеличении интенсивности звука из другого, позволяя объекту перемещаться практически вертикально вверх. Совсем недавно разработка плат преобразователей с фазированной антенной решеткой позволила более произвольно управлять несколькими частицами и каплями одновременно. Недавние достижения также привели к значительному снижению цены на эту технологию. «TinyLev» — это акустический левитатор, который может быть сконструирован из широко доступных недорогих готовых компонентов и одной рамки, напечатанной на 3D-принтере.

Первая демонстрация возможности акустической левитации была сделана в экспериментах с трубкой Кундта в 1866 году. Эксперимент в резонансной камере продемонстрировал, что частицы могут собираться в узлах стоячей волны силами акустического излучения. Однако первоначальный эксперимент проводился с целью расчета длин волн и, следовательно, скорости звука внутри газа.

Первая левитация была продемонстрирована Бюксом и Мюллером в 1933 году, которые левитировали капли спирта между кристаллом кварца и отражателем. Следующий шаг вперед был сделан Хилари Сент-Клер, которая интересовалась силами акустического излучения в первую очередь для их применения при агломерации частиц пыли для использования в горнодобывающей промышленности. Он создал первое электромагнитное устройство для создания амплитуд возбуждения, необходимых для левитации, затем перешел к левитации более крупных и тяжелых предметов, включая монету.

#физика #наука #science #physics #акустика #волны #опыты #эксперименты #видеоуроки

💡 Physics.Math.Code // @physics_lib
31713👍8🔥6