Media is too big
VIEW IN TELEGRAM
Видеоэкран с трёхмерной мышью из фототранзистора и двухцветных китайских матриц под управлением микроконтроллера ATmega-644 на собственной многозадачной операционной системе. Сделано на предельно дешёвой элементной базе, вся схема разведена в двух слоях.
Многооконный интерфейс с предзагруженными демо-приложениями: скрин-сейвер, графическая рисовалка, видеролики с альфа-каналом, интерактивное моделирование в реальном времени пламени на основе температурной модели горения и воды методом клеточного автомата.
Сайт автора: http://velect.ru/
Статья о реализованной в проекте многозадачности: http://www.velect.ru/articles.html
#техника #конструктор #ARM #ATmega644 #программирование #механика #разработка #микроконтроллеры
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
3👍118🔥64❤18🤯15🗿13⚡4🙈3😱2🤩2😍2🌚2
Media is too big
VIEW IN TELEGRAM
Из конструктора LEGO Technic можно собирать механические подвески — узлы, которые входят в состав моделей автомобилей, мотоциклов и других транспортных средств. Некоторые наборы LEGO Technic, в которых есть подвески:
▪️MOC-159983 — Axle with Steering, Drive, Suspension for 1:10 wheels (2023) — набор с подвеской для колёс 1:10.
▪️MOC-152716 — Simple Front Suspension (2023) — набор с простой передней подвеской.
▪️MOC-132045 — Front Race Car Suspension (2022) — набор с подвеской для передней оси гоночного автомобиля.
▪️MOC-128195 — Torsen differential mounted on a double wishbone suspension (2022) — набор с дифференциалом Торсена, установленным на подвеску с двойными поперечными рычагами.
⚙️ Редуктор из LEGO с огромным передаточным числом
⚙️ Моделирование решения задачи передвижения автомобилей по песчаному грунту с помощью конструктора LEGO
⛔️ 7 препятствий и 5 LEGO-роботов, которые умеют шагать
⚙️ LEGO® Technic Строительство мостов: Задача на 100 кг!
🎻 Когда Lego играет на гитаре лучше, чем ты...
⚙️ Lego MindStorm
👾 Что будет, если надолго оставить инженера с конструктором Lego
#техника #конструктор #ARM #программирование #механика #разработка #микроконтроллеры
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍45❤16🔥10❤🔥7😍2🤩1
Очевидно, что есть два способа, если исключаем одноканал: Способ 1 (4x8 ГБ) vs Способ 2 (2x16 ГБ). Однозначно лучше и эффективнее: Способ 2 — 2 планки по 16 ГБ. Вот почему это так, особенно для современных платформ (AMD AM5 и Intel LGA 1700/1851):
▪️ 1. Меньшая нагрузка на контроллер памяти (IMC). Контроллеру памяти внутри процессора значительно проще работать с двумя планками, чем с четырьмя. Это повышает стабильность системы, особенно при работе на высоких частотах с низкими таймингами.
▪️ 2. Более высокий шанс запуска на заявленной высокой частоте. Память DDR5 особенно чувствительна к количеству модулей. Сборка из 2 планок с большой вероятностью заработает на своей штатной частоте (например, 6000 МГц) с включенным EXPO/XMP. Сборка из 4 планок почти всегда потребует ручного понижения частоты (например, до 5200-5600 МГц) или увеличения таймингов для стабильной работы.
⚠️ Потеря в производительности от более низкой частоты часто перевешивает гипотетический выигрыш от четырёхканального доступа.
▪️ 3. Возможность будущего апгрейда. У вас останутся два свободных слота на материнской плате. Если вам вдруг позарез понадобится 64 ГБ (для монтажа, работы с AI и т.д.), вы просто докупите еще два модуля по 16 ГБ. В варианте с 4x8 ГБ апгрейд возможен только полной заменой всех планок на 4 новых.
▪️ 4. Совместимость и стабильность. Комплекты из двух планок протестированы производителем и гарантированно работают вместе. Сборка из четырёх планок — это всегда лотерея, даже если вы покупаете два одинаковых комплекта по 2x8 ГБ.
Краткий итог: Для 99% пользователей, особенно геймеров, конфигурация 2 модуля по 16 ГБ является золотым стандартом и оптимальным выбором.
Нужно ли 64 ГБ для игрового компьютера? На данный момент (2025 год) для чисто игрового компьютера 64 ГБ — это избыточно. И вот почему:
▪️ Подавляющее большинство игр комфортно себя чувствуют в рамках 16-32 ГБ оперативной памяти. Даже такие современные и требовательные тайтлы, как Cyberpunk 2077 с патчейми, Alan Wake 2, Star Citizen, могут потреблять до 20-24 ГБ ОЗУ, но это включает в себя и саму ОС, и фоновые приложения.
▪️ 32 ГБ — это идеальный и достаточный объем на ближайшие 2-3 года для любых игр с запасом. Вы полностью исключите любые подтормаживания, связанные с нехваткой ОЗУ, и сможете держать открытым браузер, дискорд и другие приложения во время игры.
▫️1. Параллельная работа с "тяжелыми" приложениями: Если вы одновременно с игрой занимается стримингом (через OBS Studio), монтажом видео, рендерингом или работаете с виртуальными машинами.
▫️2. Очень специфичные игры и моды: Некоторые симуляторы (например, Microsoft Flight Simulator 2024 с огромным количеством модов на высоких настройках) или моды для игр вроде Cities: Skylines II могут "съедать" гигантские объемы памяти.
▫️3. Работа с ИИ (AI): Локальное использование нейросетей (генерация изображений, работа с LLM-моделями) требует огромных объемов ОЗУ.
▫️4. Профессиональные задачи: Видеомонтаж в 4K/8K, работа с большими базами данных, 3D-моделирование сложных сцен.
Останавливайтесь на объеме 32 ГБ. Этого более чем достаточно для игр и многозадачности. Вкладывайте сэкономленный бюджет (от не покупки 64 ГБ) в более важные компоненты: например, в более мощную видеокарту или более быстрый накопитель. Это даст гораздо более заметный прирост производительности в играх. Если в будущем вы поймете, что 64 ГБ вам реально нужны, вы всегда сможете докупить второй идентичный комплект из 2x16 ГБ и получить в сумме 64 ГБ. Но будьте готовы к тому, что для стабильной работы системе, возможно, придется сбросить частоту памяти. #hardware #железо #техника #программирование #разработка #development #computer_science
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥61❤32👍23❤🔥6💯3🤔2🗿2⚡1👨💻1
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Поскольку длительность используемых в данном методе обработки электрических импульсов не превышает 0.01 с, выделяющееся тепло не успевает распространиться в глубь материала и даже незначительной энергии оказывается достаточно, чтобы разогреть, расплавить и испарить небольшое количество вещества. Кроме того, давление, развиваемое частицами плазмы при ударе об электрод, способствует выбросу (эрозии) не только расплавленного, но и просто разогретого вещества. Поскольку электрический пробой, как правило, происходит по кратчайшему пути, то прежде всего разрушаются наиболее близко расположенные участки электродов. Таким образом, при приближении одного электрода заданной формы (инструмента) к другому (заготовке) поверхность последнего примет форму поверхности первого. Производительность процесса, качество получаемой поверхности в основном определяются параметрами электрических импульсов (их длительностью, частотой следования, энергией в импульсе). Электроэрозионный метод обработки объединил электроискровой и электроимпульсный методы.
Первые сообщения об электрических разрядах и эффектах, их сопровождающих, делали Роберт Бойль (1694), Бенджамин Франклин (1751), Джозеф Пристли (1766) Лихтенберг Георг Кристиан (1777). В 1938 году советский инженер Л. А. Юткин показал, что серия электроискровых разрядов порождает формообразующие гидравлические удары, что положило начало электроискровой штамповке металлов, и стало следующим, после электродуговой сварки, шагом по развитию технологических методов формообразования электрическими разрядами. В 1941 году учёным Б. Р. Лазаренко и Н. Е. Лазаренко из МГУ было поручено найти методы увеличения срока службы прерывателей-распределителей зажигания автомобильных двигателей. В результате исследований и экспериментов с вольфрамом они обратили внимание на направленное разрушение электрическими разрядами, создаваемыми импульсами определённой формы тока, что послужило толчком к созданию в 1943 году нового технологического процесса обработки заготовок с помощью электроэрозии. #physics #техника #электродинамика #физика #видеоуроки #производство #научные_фильмы
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍47🔥23❤19⚡4🥰2
This media is not supported in your browser
VIEW IN TELEGRAM
Что такое гидродинамическое сопротивление? Это сила, которая противодействует движению тела в воде. Оно складывается из нескольких компонентов, но в нашем случае ключевую роль играют два:
▪️Сопротивление трения: Связано с вязкостью воды. Чем больше смоченная поверхность тела, тем выше сопротивление.
▪️Сопротивление формы (или давление): Связано с разницей давлений на носовой и кормовой частях тела. "Лобовые" элементы, создающие турбулентность и разрежение за собой, сильно увеличивают это сопротивление.
Неподвижный винт с жестко закрепленными лопастями — это идеальный генератор сопротивления формы. Представьте себе лопасть винта:
▪️Она имеет сложный аэродинамический профиль, оптимизированный для работы в режиме тяги (когда вращается и "ввинчивается" в воду).
▪️Когда судно движется, а винт неподвижен, поток воды набегает на лопасть под отрицательным углом атаки (фактически, с "обратной", нерабочей стороны).
▪️В таком режиме профиль лопасти работает крайне неэффективно: за лопастью образуется мощная зона турбулентности и кавитации (разрывов потока), что создает очень высокое сопротивление давления.
Аналогия: Попробуйте протащить по воде обычную ложку выпуклой стороной вперед. А потом — ребром. Разница в сопротивлении будет колоссальной. Неподвижный винт — это и есть несколько таких "ложек", создающих огромный тормозящий эффект. Для парусной яхты это означает потерю скорости до 0.5-1 узла, что очень много в условиях слабого ветра.
В сложенном положении лопасти поворачиваются вокруг своих осей и складываются вдоль линии потока воды, параллельно валу или в специальные выемки в ступице. Что это дает с точки зрения гидродинамики:
1. Резкое снижение сопротивления формы: Вместо объемных, необтекаемых лопастей, поток воды обтекает компактную, обтекаемую ступицу и сложенные лопасти. Зона турбулентности и разрежения за ними минимальна.
2. Уменьшение смоченной поверхности: Сложенные лопасти представляют собой гораздо меньшую площадь, что снижает сопротивление трения.
В результате, сложенный винт создает сопротивление, сравнимое с сопротивлением простого стержня (вала), что позволяет судну развивать значительно большую скорость под парусами или экономить топливо на буксире. Обычно складывание/раскладывание происходит автоматически под действием двух сил:
1. Центробежная сила: При запуске двигателя и раскрутке вала центробежная сила стремится "выбросить" лопасти наружу, преодолевая усилие специальных пружин или грузов.
2. Гидродинамическая сила: Когда лопасти начинают захватывать воду, давление на их рабочую поверхность окончательно переводит их в рабочее, развернутое положение.
♻️ Существует также вариант V-образного (ферингтоновского) винта, у которого лопасти не складываются, а разворачиваются ребром к потоку, что дает схожий эффект снижения сопротивления. А для самых требовательных к скорости яхт используются съемные винты, которые убираются в специальный колодец в корпусе, полностью устраняя сопротивление. #гидростатика #гидродинамика #физика #physics #опыты #техника
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍74🔥30❤10✍4❤🔥3🤯2🌚2🤨2🙈2😱1🆒1