Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Игла, в ушко которой заправлена нить, совершает возвратно-поступательное движение. В результате:
1. Игла прокалывает материал, проводит через него верхнюю нить и создаёт у ушка иглы петлю.
2. При движении иглы вниз верхняя кромка ушка натягивает нитку, и обе её ветви напрягаются.
3. Когда игла начинает подъём при обратном ходе, натяжение ниток ослабевает, и обе ниточные ветви медленно расходятся в стороны, образуя петлю грушевидной формы.
Челнок обеспечивает захват петли и её обвод вокруг шпульки с нижней нитью. Процесс работы:
1. Формирование петли: когда игла опускается в ткань, она проводит с собой нить, челнок захватывает эту нить и образует петлю.
2. Проход нижней нити: через сформированную петлю проходит нить из нижней катушки (шпульки), лежащей в челноке.
3. Затягивание стежка: когда игла поднимается обратно, петля затягивается, и нить с шпульки закрепляется, формируя стежок.
#топология #видеоуроки #лекции #геометрия #физика #математика
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍82🔥29❤25🤔4🤯4❤🔥2🤩1🗿1
Ионный двигатель — тип электрического ракетного двигателя, принцип работы которого основан на создании реактивной тяги на базе ионизированного газа, разогнанного до высоких скоростей в электрическом поле.
✅ Достоинством этого типа двигателей является малый расход топлива и продолжительное время функционирования (максимальный срок непрерывной работы самых современных образцов ионных двигателей составляет более трёх лет).
❌ Недостатком ионного двигателя является ничтожная по сравнению с химическими двигателями тяга.
По сравнению с двигателями с ускорением в магнитном слое ионный двигатель обладает большим энергопотреблением при равном уровне тяги. Ионные двигатели используют повышенные напряжения, обладают более сложной схемой и конструкцией, что усложняет решение задачи обеспечения высокой надёжности и электрической прочности двигателя.
Принцип работы двигателя заключается в ионизации газа и его разгоне электростатическим полем. При этом, благодаря высокому отношению заряда к массе, становится возможным разогнать ионы до очень высоких скоростей (вплоть до 210 км/с, по сравнению с 3—4,5 км/с у химических ракетных двигателей). Таким образом, в ионном двигателе можно достичь очень большого удельного импульса. Это позволяет значительно уменьшить расход реактивной массы ионизированного газа по сравнению с расходом реактивной массы в химических ракетах, но требует больших затрат энергии.
В существующих реализациях ионного двигателя в качестве источника энергии, необходимой для ионизации топлива, используются солнечные батареи.
Рабочим телом, как правило, является ионизированный инертный газ (аргон, ксенон и т. п.), но иногда и ртуть. В ионизатор подаётся топливо, которое само по себе нейтрально, но при бомбардировании высокоэнергетическими электронами ионизируется. Таким образом, в камере образуется смесь из положительных ионов и отрицательных электронов. Для «отфильтровывания» электронов в камеру выводится трубка с катодными сетками, которая притягивает к себе электроны. Положительные ионы притягиваются к системе извлечения, состоящей из двух или трёх сеток. Между сетками поддерживается большая разница электростатических потенциалов (+1090 Вольт на внутренней против -225 Вольт на внешней). В результате попадания ионов между сетками, они разгоняются и выбрасываются в пространство, ускоряя корабль, согласно третьему закону Ньютона. Электроны, пойманные в катодную трубку, выбрасываются из двигателя под небольшим углом к соплу и потоку ионов. Это делается, во-первых, для того, чтобы корпус корабля оставался нейтрально заряженным, а во-вторых, чтобы ионы, «нейтрализованные» таким образом, не притягивались обратно к кораблю. #физика #электродинамика #наука #physics #science #лекции #видеоуроки #опыты #эксперименты
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍56❤40❤🔥11🔥8🤔5⚡3
💫 Ричард Фейнман: 7 лекций о связи математики и физики // Характер физических законов
Сборник лекций, прочитанных во время традиционных Мессенджеровских чтений в Кориеллском университете (в 1964 г.) известным физиком-теоретиком Р. Фейнманом. В этих лекциях, обращаясь к очень широкой аудитории, Фейнман рассказывает о самых фундаментальных законах природы, о том, как их открывают, каковы их особенности. Во второе издание перевода (1-е-«Мир», 1968 г.) внесены некоторые редакционные изменения.
▪️ Лекция 1. Пример физического закона - закон тяготения
▪️ Лекция 2. Связь математики с физикой
▪️ Лекция 3. Великие законы сохранения
▪️ Лекция 4. Симметрия физических законов
▪️ Лекция 5. Различие прошлого и будущего
▪️ Лекция 6. Вероятность и неопределенность - квантовомеханический взгляд на природу
▪️ Лекция 7. В поисках новых законов
#physics #физика #лекции #видеоуроки #научные_фильмы #наука
💡 Physics.Math.Code // @physics_lib
Сборник лекций, прочитанных во время традиционных Мессенджеровских чтений в Кориеллском университете (в 1964 г.) известным физиком-теоретиком Р. Фейнманом. В этих лекциях, обращаясь к очень широкой аудитории, Фейнман рассказывает о самых фундаментальных законах природы, о том, как их открывают, каковы их особенности. Во второе издание перевода (1-е-«Мир», 1968 г.) внесены некоторые редакционные изменения.
▪️ Лекция 1. Пример физического закона - закон тяготения
▪️ Лекция 2. Связь математики с физикой
▪️ Лекция 3. Великие законы сохранения
▪️ Лекция 4. Симметрия физических законов
▪️ Лекция 5. Различие прошлого и будущего
▪️ Лекция 6. Вероятность и неопределенность - квантовомеханический взгляд на природу
▪️ Лекция 7. В поисках новых законов
#physics #физика #лекции #видеоуроки #научные_фильмы #наука
💡 Physics.Math.Code // @physics_lib
❤80👍37❤🔥6🔥4⚡1😍1
Media is too big
VIEW IN TELEGRAM
Опыт, который демонстрирует, как электрическое поле взаимодействует с диэлектриками. На видео пластины плоского конденсатора опущены в воду, подключаем к ним высокое напряжение, и... вода сама втягивается в зазор!
Кажется, будто вода «прилипает» к пластинам. Но на самом деле её вталкивает туда сила, порожденная электрическим полем. Давайте разберемся почему.
▪️ 1. Вода – не просто проводник
Хотя вода с примесями проводит ток, в этом опыте ключевую роль играет ее диэлектрическая природа. Молекула воды (H₂O) – это диполь. У нее есть положительный полюс (со стороны атомов водорода) и отрицательный (со стороны атома кислорода). В обычном состоянии эти диполи хаотично ориентированы.
▪️ 2. Сила поля – главный мотиватор
Когда мы включаем напряжение, между пластинами конденсатора создается неоднородное электрическое поле: у краев пластин оно слабее, а в зазоре – значительно сильнее.
▪️ 3. Что делают молекулы-диполи?
Под действием поля диполи воды начинают ориентироваться – поворачиваются вдоль силовых линий: «плюсом» к отрицательной пластине, «минусом» – к положительной. Это явление называется поляризацией.
➕ Физика: Сила, действующая на концы диполя, не просто его поворачивает. Поскольку поле неоднородное (сильнее внутри конденсатора и слабее снаружи), сила, притягивающая «+» конец диполя к «-» пластине, будет чуть больше, чем сила, отталкивающая его «-» конец от той же пластины. В результате на каждую поляризованную молекулу воды действует результирующая сила, которая втягивает ее из области слабого поля в область сильного – то есть, прямо в зазор между пластинами! Диэлектрик (в нашем случае – вода) всегда стремится переместиться туда, где напряженность электрического поля максимальна. Именно эта сила и заставляет воду подниматься между пластинами, преодолевая силу тяжести и силы поверхностного натяжения.
Такой эффект наблюдается не только с водой, но и с другими жидкими диэлектриками (например, с керосином или маслом), и лежит в основе работы многих электростатических устройств. #physics #эксперименты #электродинамика #физика #видеоуроки #опыты #научные_фильмы #лекции
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍33🔥16❤11❤🔥2⚡1