This media is not supported in your browser
VIEW IN TELEGRAM
Основная причина эффекта — это практически мгновенное испарение нижней части капли при контакте с раскалённой поверхностью. В этот момент происходит образование прослойки пара, которая как бы «подвешивает» неиспарившуюся часть капли над раскалённой поверхностью, не давая жидкости вступить с ней в прямой контакт.
В повседневной жизни явление можно наблюдать при приготовлении пищи: для оценки температуры сковороды на неё брызгают водой — если температура достигла или уже выше точки Лейденфроста, вода соберётся в капли, которые будут «скользить» по поверхности металла и испаряться дольше, чем если бы это происходило в сковороде, нагретой выше точки кипения воды, но ниже точки Лейденфроста. #физика #термодинамика #мкт #опыты #эксперименты #physics #видеоуроки #научные_фильмы
💧 Капля воды падающая на горячий металл 💥в Slow motion
💧 Эффект Лейденфроста
🚀 Что будет, если добавить жидкий газ в бутылку с водой
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍80🔥36❤31🤩8
🕯🔍 Шлирен-метод (от нем. Schlieren — оптическая неоднородность) — способ обнаружения оптических неоднородностей в прозрачных, преломляющих средах, и выявления дефектов отражающих поверхностей.
Иногда его называют методом Тёплера — по имени автора, немецкого физика Августа Тёплера.
Шлирен-метод, разработанный в 1864 году Августом Тёплером, является развитием предложенного в 1857 году теневого метода Леона Фуко, разработанного для контроля геометрии при изготовлении сферических зеркал телескопов. Заключался метод Фуко в том, что проверяемое зеркало освещали точечным источником света. В центр кривизны сферы помещали непрозрачный экран с острой кромкой, затеняющий в формируемом изображении точечный источник, но не препятствующий лучам, рассеянным зеркалом из-за нарушения геометрии. Позднее такой экран стали называть ножом Фуко.
Если поверхность зеркала была строго сферичной, нож, перекрывая основной световой поток точечного источника, равномерно затенял формируемое зеркалом изображение. Если сфера имела дефекты — формируемое изображение, в зависимости от знака и степени ошибки радиуса локальной кривизны, имело светлые или тёмные области. Ориентируясь по такой разной освещённости, проводили дошлифовку зеркала.
Шлирен-метод получил особенно широкое распространение для визуализации различных процессов в воздушной среде. Это относится, например, к исследованиям распределения плотности воздушных потоков образующихся при обтекании моделей в аэродинамических трубах, то есть, в авиационной технике. Применяется, также в механике жидкости, баллистике, изучении распространения и смешивания газов и растворов, исследовании теплообмена за счет конвекции и т. п.
#physics #наука #физика #термодинамика #эксперименты #опыты #видеоуроки #научные_фильмы
💡 Physics.Math.Code // @physics_lib
Иногда его называют методом Тёплера — по имени автора, немецкого физика Августа Тёплера.
Шлирен-метод, разработанный в 1864 году Августом Тёплером, является развитием предложенного в 1857 году теневого метода Леона Фуко, разработанного для контроля геометрии при изготовлении сферических зеркал телескопов. Заключался метод Фуко в том, что проверяемое зеркало освещали точечным источником света. В центр кривизны сферы помещали непрозрачный экран с острой кромкой, затеняющий в формируемом изображении точечный источник, но не препятствующий лучам, рассеянным зеркалом из-за нарушения геометрии. Позднее такой экран стали называть ножом Фуко.
Если поверхность зеркала была строго сферичной, нож, перекрывая основной световой поток точечного источника, равномерно затенял формируемое зеркалом изображение. Если сфера имела дефекты — формируемое изображение, в зависимости от знака и степени ошибки радиуса локальной кривизны, имело светлые или тёмные области. Ориентируясь по такой разной освещённости, проводили дошлифовку зеркала.
Шлирен-метод получил особенно широкое распространение для визуализации различных процессов в воздушной среде. Это относится, например, к исследованиям распределения плотности воздушных потоков образующихся при обтекании моделей в аэродинамических трубах, то есть, в авиационной технике. Применяется, также в механике жидкости, баллистике, изучении распространения и смешивания газов и растворов, исследовании теплообмена за счет конвекции и т. п.
#physics #наука #физика #термодинамика #эксперименты #опыты #видеоуроки #научные_фильмы
💡 Physics.Math.Code // @physics_lib
🔥52👍28❤17❤🔥2🆒2👏1🤯1🤩1
Знакомые нам Цельсий и Фаренгейт — продукты своей эпохи.
▪️ Фаренгейт (1724): Даниил Фаренгейт был практиком. За ноль он взял температуру самой холодной зимы в Данциге (смесь льда, воды и нашатыря). Второй точкой стала температура человеческого тела (96°F — да, он немного ошибся). А 32°F для льда и 212°F для кипения воды получились уже потом. Шкала была очень точной для своего времени, но ее точки отсчета кажутся нам сегодня случайными.
▪️ Цельсий (1742): Андерс Цельсий был ученым. Его шкала была гениальной в своей простоте: 0° — таяние льда, 100° — кипение воды (при нормальном давлении, конечно). Все логично и повторяемо. Но это все еще эмпирическая шкала.
🌡 Абсолютная Идея: Лорд Кельвин и ноль
В 19 веке физики поняли: температура — это мера движения молекул. Чем быстрее они двигаются, тем выше температура. Логичный вопрос: а что будет, если движение полностью остановить? Уильям Томсон (Лорд Кельвин) предложил абсолютную термодинамическую шкалу (1848). Ее ноль — это температура, при которой тепловое движение прекращается. Это -273.15°C. Теперь мы знаем, что достичь этого нуля невозможно (согласно третьему началу термодинамики), но можно сколь угодно близко подойти.
Интересный факт: Шкала Кельвина не привязана к воде! Она основана на фундаментальных принципах работы идеальных тепловых машин (цикл Карно). Вода с ее точками кипения и замерзания — просто удобный практический эталон.
🥶 Физика на грани фантастики: Отрицательные температуры 🌡
А теперь — самое неинтуитивное. В термодинамике существует понятие отрицательной абсолютной температуры. Нет, это не холоднее абсолютного нуля. Это — горячее любой положительной температуры.
Как это возможно? Забудем на секунду о кинетической энергии. Вспомним про энтропию — меру беспорядка. Обычно, когда вы добавляете энергии системе, молекулы раскачиваются, и энтропия (беспорядок) растет. Но представьте систему с ограниченным количеством энергетических уровней, например, набор атомных спинов в магнитном поле. Есть состояние с низкой энергией (спины в одну сторону) и высокой энергией (спины в другую).
1. При абсолютном нуле все спины в основном состоянии — максимальный порядок.
2. При добавлении энергии спины начинают хаотично переворачиваться — энтропия растет (положительная температура).
3. А что, если мы принудительно перевернем большинство спинов в состояние с высокой энергией? Мы получим снова почти полный порядок (только теперь на "верхнем" уровне), но система будет обладать огромной энергией! Энтропия при этом уменьшается с ростом энергии.
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
5🔥132👍51❤46🤯13🤔11✍5
Media is too big
VIEW IN TELEGRAM
🧊 Интересный опыт: Лёд под проволокой
Что будет происходить с ледяным бруском, если на него будет действовать тонкая проволока, создавая большое давление?
Интересный факт: Температура плавления под давлением почти постоянна 0 ° C при давлениях выше тройной точки, равной 611,7 Па, когда вода может существовать только в твердой или жидкой фазах, при атмосферном давлении (100 кПа) примерно до 10 МПа. При повышении давления выше 10 МПа температура плавления под давлением снижается как минимум до -21,9 ° C при 209,9 МПа. #physics #физика #опыты #термодинамика #эксперименты #science #наука #видеоуроки
💡 Physics.Math.Code // @physics_lib
Что будет происходить с ледяным бруском, если на него будет действовать тонкая проволока, создавая большое давление?
Интересный факт: Температура плавления под давлением почти постоянна 0 ° C при давлениях выше тройной точки, равной 611,7 Па, когда вода может существовать только в твердой или жидкой фазах, при атмосферном давлении (100 кПа) примерно до 10 МПа. При повышении давления выше 10 МПа температура плавления под давлением снижается как минимум до -21,9 ° C при 209,9 МПа. #physics #физика #опыты #термодинамика #эксперименты #science #наука #видеоуроки
💡 Physics.Math.Code // @physics_lib
🔥43👍31❤11🤯2😱2❤🔥1🤩1
This media is not supported in your browser
VIEW IN TELEGRAM
🎈 Резиновый шарик в тепловизоре 🔥
Что же происходит в резине, когда мы её растягиваем? В обычном состоянии цепочки полимера находятся в слегка изогнутом, свернутом состоянии. Это объясняется тем, что звенья и атомы не закреплены жёстко как на каком-то каркасе или проволоке – происходит их тепловое движение и конформация полимера, то есть его пространственная форма и положение цепочек непрерывно меняются. Более того, сами цепи способны соударяться друг о друга. Когда мы начинаем растягивать резину, цепочки начинают вытягиваться вдоль одной линии. А, значит, число соударений цепочек друг о друга увеличивается. Что приводит к росту скорости молекул и увеличению внутренней энергии – резина нагревается. Как только мы прекращаем растягивать резину, тепловое движение начинает стремиться вновь «запутать» цепочки, позволить им стать изогнутыми и сократить их длину. В результате резина сжимается. Такие «расслабленные» цепочки, с которых сняли приложенное напряжение, наоборот будут терять энергию: из-за этого резина будет охлаждаться.
Чтобы убедиться в этом, вы можете проделать опыт самостоятельно: вам нужно всего лишь приложить, например, резиновую ленту (подойдут даже канцелярские резинки) к губам в момент растяжения и затем отпустить её, позволив сжаться. Таким образом вы сможете почувствовать разницу в температуре растягиваемого участка.
💥 Зная молекулярный механизм, как работают резиновые ленты, можно пользоваться таким лайфхаком: нагретая резина может поднять больший груз! При большей температуре натянутые цепочки будут подвергаться более сильной бомбардировке соседних молекул, а значит, будут стремиться сильнее сжаться обратно. Поэтому в целом резиновую ленту будет сложнее растянуть и ее грузоподъемность увеличится! #физика #механика #видеоуроки #science #термодинамика #МКТ #physics #опыты #эксперименты
💡 Physics.Math.Code // @physics_lib
Что же происходит в резине, когда мы её растягиваем? В обычном состоянии цепочки полимера находятся в слегка изогнутом, свернутом состоянии. Это объясняется тем, что звенья и атомы не закреплены жёстко как на каком-то каркасе или проволоке – происходит их тепловое движение и конформация полимера, то есть его пространственная форма и положение цепочек непрерывно меняются. Более того, сами цепи способны соударяться друг о друга. Когда мы начинаем растягивать резину, цепочки начинают вытягиваться вдоль одной линии. А, значит, число соударений цепочек друг о друга увеличивается. Что приводит к росту скорости молекул и увеличению внутренней энергии – резина нагревается. Как только мы прекращаем растягивать резину, тепловое движение начинает стремиться вновь «запутать» цепочки, позволить им стать изогнутыми и сократить их длину. В результате резина сжимается. Такие «расслабленные» цепочки, с которых сняли приложенное напряжение, наоборот будут терять энергию: из-за этого резина будет охлаждаться.
Чтобы убедиться в этом, вы можете проделать опыт самостоятельно: вам нужно всего лишь приложить, например, резиновую ленту (подойдут даже канцелярские резинки) к губам в момент растяжения и затем отпустить её, позволив сжаться. Таким образом вы сможете почувствовать разницу в температуре растягиваемого участка.
💥 Зная молекулярный механизм, как работают резиновые ленты, можно пользоваться таким лайфхаком: нагретая резина может поднять больший груз! При большей температуре натянутые цепочки будут подвергаться более сильной бомбардировке соседних молекул, а значит, будут стремиться сильнее сжаться обратно. Поэтому в целом резиновую ленту будет сложнее растянуть и ее грузоподъемность увеличится! #физика #механика #видеоуроки #science #термодинамика #МКТ #physics #опыты #эксперименты
💡 Physics.Math.Code // @physics_lib
❤41👍26🔥19🤯5🌚4😱3🙈1