Physics.Math.Code
143K subscribers
5.2K photos
2.06K videos
5.81K files
4.46K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

№ 6045941532

Обратная связь: @physicist_i
Download Telegram
Задачи по физике [4 книги].zip
24.4 MB
📘 Задачи по физике [1988-2008] Воробьев, Зубков, Кутузова, Савченко, Трубачев, Харитонов, Чертов

Содержит свыше 2000 задач по физике из числа предлагавшихся в физико-математической школе-интернате при Новосибирском государственном университете. Особое внимание уделено тем разделам, которые в школе изучаются недостаточно глубоко, но важны для успешного обучения в вузе. Включено много оригинальных задач, связанных с практикой научно-исследовательской работы. Все они снабжены ответами, наиболее трудные — решениями. В новом издании улучшена структура расположения материала, переработаны формулировки и решения ряда задач.

Для слушателей подготовительных отделений вузов и студентов первых курсов технических направлений, учащихся и преподавателей средней школы, учащихся физико-математических школ, а также лиц, занимающихся самообразованием.

«Изучение физики — это тоже приключение. Вы найдете это сложным, иногда разочаровывающим, иногда болезненным, а часто и щедро вознаграждающим».


#физика #квантовая_физика #термодинамика #подборка_книг #механика #physics #оптика #мкт #атомная_физика #ядерная_физика #электричество #магнетизм

💡 Physics.Math.Code // @physics_lib
👍2619🔥8🤗3💯1🆒1
📘 Основы физики плазмы Том 1 [1983] Бернштейн, Байт, Вейтцнер, Галеев, Судан
📘 Основы физики плазмы Том 2 [1984] Бернштейн, Байт, Вейтцнер, Галеев, Судан
📘 Основы физики плазмы, дополнение к тому 2 [1984] Галеев, Судан


💾 Скачать книги

✏️ «Прекрасно понимая, что нельзя сомневаться в исключительной полезности многих других областей знаний, я убежден в величие, красоте и фантастической важности для человеческой цивилизации физики и ее интереснейшего раздела – физики плазмы». — заведующий кафедрой «Физика плазмы» Национального Исследовательского Ядерного Университета (НИЯУ) «МИФИ» Валерий Александрович Курнаев

Физика плазмы в качестве самостоятельной отрасли физики возникла как прикладная наука, призванная решать определенные практически значимые задачи. Но задачи оказались настолько масштабные, что для их решения потребовалось целенаправленное развитие обширной фундаментальной научной базы! Основной принцип научных работ прекрасно сформулировал соратник Игоря Васильевича Курчатова, один из руководителей советского Атомного Проекта, замечательный физик Юлий Борисович Харитон: «Мы должны знать в десять раз больше того, что требуется для решения практических задач». #физика #электродинамика #плазма #электроника #электричество #магнетизм #physics

💡 Physics.Math.Code // @physics_lib
👍3016🔥111🤯1
This media is not supported in your browser
VIEW IN TELEGRAM
🧲 Магнитная аномалия — разные направления вращения

Металлические шарики вращаются против часовой стрелки, потому что они пытаются "догнать" смещающееся магнитное поле, но из-за инерции (в данном случае магнитной инерции, вызванной вихревыми токами) они всегда отстают. Чтобы уменьшить это отставание, они начинают вращаться в противоположную сторону, что с точки зрения неподвижного наблюдателя выглядит как вращение против часовой стрелки. Это явление абсолютно аналогично работе беличьей клетки в асинхронном электродвигателе.

1. Вращающееся магнитное поле: Ваши 8 магнитов с чередующимися полюсами, вращаясь по часовой стрелке, создают мощное вращающееся магнитное поле. Представьте, что это поле — это невидимый "буравчик", который ввинчивается в пространство над диском.

2. Вихревые токи (токи Фуко): Когда это вращающееся магнитное поле проходит под металлическим шариком, оно наводит в нем электрические токи. Эти токи циркулируют внутри объема шарика, поэтому их называют вихревыми.

3. Взаимодействие токов и поля (Закон Ленца): Согласно закону электромагнитной индукции и правилу Ленца, вихревые токи всегда имеют такое направление, чтобы противодействовать причине, их вызвавшей. Причина — это изменение магнитного поля, а именно его смещение относительно шарика.

4. "Погоня" с отставанием (Принцип асинхронности):
▪️ Шарик — это не магнит, у него нет собственных полюсов, которые могли бы сразу зафиксироваться напротив полюсов вращающегося диска. Ему нужно время, чтобы в нем навелись токи, которые, в свою очередь, создадут собственное магнитное поле.
▪️ Из-за этого запаздывания (магнитной инерции) поле, созданное вихревыми токами в шарике, всегда отстает от внешнего поля диска.
▪️ Вращающееся поле диска как бы "убегает" от шарика по часовой стрелке.
▪️ Чтобы уменьшить это отставание (т.е. уменьшить скорость изменения поля относительно себя), шарик стремится двигаться в том же направлении, что и поле. Он пытается "догнать" убегающий магнитный поток.

5. Почему направление обратное? Представьте, что вы стоите на эскалаторе, который едет вниз. Чтобы остаться на одном уровне относительно неподвижного пола, вам нужно идти вверх по эскалатору. Эскалатор — это магнитное поле, движущееся по часовой стрелке. Шарик — это вы. Чтобы "остаться на месте" относительно убегающего поля (то есть не отставать), шарик должен бежать по "эскалатору" против его хода. Для внешнего наблюдателя, смотрящего на неподвижный пластиковый лист, это выглядит как движение шарика против часовой стрелки.

Выводы:
Частота вращения двигателя определяет скорость "убегания" поля и, следовательно, скорость вращения шарика. Дело в запаздывании намагниченности металла. "Запаздывание намагниченности" — это и есть физическая суть явления, обусловленная возникновением вихревых токов и индуктивностью материала. #физика #электродинамика #наука #опыты #physics #science #магнетизм

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍5226🔥9🤯42😱2🤨1
Media is too big
VIEW IN TELEGRAM
🧲 Хранитель магнитного поля — опыт по физике

Разница в том, как мы прикладываем магнит (к соединенным или разъединенным деталям), кардинально меняет результат из-за понятия магнитной цепи.
▪️ К разъединенным деталям: Каждая деталь намагничивается отдельно и слабее.
▪️К соединенным деталям: Детали вместе образуют единый "магнитный проводник", намагничиваются сильнее и равномерно по всей длине.

Случай 1: Магнит прикладывают к разъединенным деталям.
Что делаем: Берем первый стержень, прикладываем к нему магнит на несколько секунд. Убираем магнит. Затем берем второй стержень и повторяем процедуру.
Что происходит внутри:
— Магнитное поле магнита воздействует на каждый стержень по отдельности.
— В области стержня, непосредственно контактирующей с магнитом, магнитные домены (крошечные области, похожие на маленькие магнитики) поворачиваются, выстраиваясь вдоль силовых линий поля.
— Однако, поскольку стержень не замкнут, силовым линиям трудно пройти через весь его объем. Они "выталкиваются" из стержня, создавая разомкнутую магнитную цепь.

Результат: Каждый стержень становится слабым постоянным магнитом. Намагниченность будет неравномерной: сильнее всего у того конца, куда прикладывали магнит, и слабее к противоположному концу. Почему слабой? Большая часть магнитной энергии тратится не на намагничивание, а на создание магнитного поля в окружающем воздухе, который имеет очень высокое магнитное сопротивление.

Случай 2: Магнит прикладывают к соединенным деталям.
Что делаем: Сначала плотно соединяем два стержня торцами, чтобы получился один длинный стержень. Затем прикладываем магнит к месту стыка или к одному из концов собранной конструкции.
Что происходит внутри:
— Соединенные стержни образуют замкнутую магнитную цепь (или почти замкнутую, если она длинная). Сталь является хорошим "проводником" для магнитного потока (имеет низкое магнитное сопротивление).
— Силовые линии поля магнита теперь легко "протекают" по всему контуру из стали, почти не выходя в воздух.
— Это эффективное поле заставляет магнитные домены выстраиваться по всей длине конструкции.

Результат: Вся конструкция из двух стержней намагничивается сильно и равномерно. После удаления магнита стержни остаются сильными постоянными магнитами. Если их разъединить, то каждый стержень будет иметь четко выраженные северный и южный полюса на своих концах.

Если вы хотите сильно намагнитить металлические детали (например, отвертку или стальной прут), всегда делайте это, когда они образуют замкнутый контур или длинный непрерывный "стержень". Приложите магнит к середине или к концу этого контура. Это самый эффективный способ. #физика #электродинамика #наука #опыты #physics #science #магнетизм

💡 Physics.Math.Code // @physics_lib
👍5624🔥72🤔2🤩2
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ Магия без огня: как индукционный нагрев меняет наши кухни и заводы

Сегодня поговорим о явлении, которое выглядит как чистая магия: положили холодную сковородку на холодную же плиту, включили — и она мгновенно раскаляется. А под ней... ничего нет! Ни огня, ни тлеющих углей. Это индукционный нагрев.

Как это работает? Если коротко: Под стеклянной поверхностью плиты спрятана катушка из меди. Когда через нее пропускают электрический ток, она создает мощное, высокочастотное, переменное магнитное поле.

Когда вы ставите на плиту посуду из ферромагнитного материала (чугун, нержавейка), это магнитное поле пронизывает ее. Но оно не просто проходит насквозь — оно заставляет электроны в металле метаться, создавая внутри сковороды или кастрюли вихревые токи (токи Фуко). Эти токи испытывают сопротивление материала, и именно эта энергия сопротивления превращается в тепло. Металл нагревает сам себя изнутри!

Кстати, попробуйте положить на работающую индукционку лист бумаги — он не загорится. А вот если поднести монетку — она станет горячей. Плита «чувствует» только определенные материалы.

Магия магией, но у всего есть первооткрыватели. История индукционного нагрева начинается не в XXI веке, и даже не в XX, а в далеком 1824 году!

▪️ 1. Первооткрыватель: Франсуа Араго 🧭
Французский физик и астроном обнаружил удивительный эффект: если вращать медный диск под намагниченной стрелкой, стрелка тоже начинает вращаться вслед за диском. Это явление назвали «вращение Араго». Суть была в том, что движущееся магнитное поле наводило в диске вихревые токи, которые, в свою очередь, создавали свое поле. Но до нагрева тогда не додумались.

▪️ 2. Теоретик: Майкл Фарадей 🧲
В 1831 году великий Фарадей открыл закон электромагнитной индукции, дав теоретическое объяснение явлениям, подобным опыту Араго. Он доказал, что изменяющееся магнитное поле порождает в проводнике электрический ток.

▪️ 3. Тот, кто дал имя: Леон Фуко ⚡️
А вот имя «вихревые токи» (или «токи Фуко») дал им в 1855 году другой француз — Леон Фуко (да-да, тот самый, что измерил скорость света и придумал маятник). Фуко как раз и обнаружил, что эти токи разогревают металл. Он проводил опыты, раскачивая металлический маятник в мощном магнитном поле, и заметил, что маятник быстро останавливается и нагревается — его энергия движения превращалась в тепло благодаря тем самым вихревым токам.

Поначалу эти токи были головной болью для инженеров — в электромоторах и трансформаторах они вызывали бесполезный и вредный нагрев. С ними боролись, собирая сердечники из изолированных пластин. Но потом человек подумал: «А если эту проблему превратить в решение?»

Что в итоге? Сначала индукционный нагрев нашел применение в металлургии (плавка металлов без примесей от топлива), закалке стали, а потом добрался и до наших кухонь. Получается, что ваша суперсовременная индукционная плита — это прямое воплощение открытий, сделанных почти 200 лет назад гениями, которые просто смотрели на мир с любопытством. Вот так фундаментальная наука спустя века меняет нашу повседневную жизнью. #электродинамика #магнетизм #физика #physics #science #опыты

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍12245🔥324🤩21👏1
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ Что будет если на электроды, между которыми проскакивает дуга (высокая напряжения) прикрутить мощные неодимовые магниты? Будет ли плазма реагировать? 🧲

Плазма дуги будет очень сильно реагировать на мощные неодимовые магниты. Дуга начнет двигаться, изгибаться и даже вращаться под действием магнитного поля. Плазма электрической дуги — это раскаленный ионизированный газ, состоящий из положительных ионов и отрицательных электронов. Это, по сути, проводник с током.

На любой движущийся заряженный частицы (а электроны в токе как раз движутся) действует сила Лоренца. Ее направление зависит от направления тока и направления магнитного поля (определяется по правилу левой руки).

Что происходит в дуге:

1. Сила, действующая на носители тока: Магнитное поле магнитов действует на движущиеся электроны (основные носители тока в дуге) с определенной силой, перпендикулярной и их движению, и направлению поля.

2. Смещение и растяжение дуги: Поскольку сила Лоренца действует на всю дугу, она начинает "толкать" плазменный шнур. Дуга перестает быть прямой кратчайшей линией между электродами и изгибается, вытягиваясь в сторону, перпендикулярную линиям магнитного поля.

3. Эффект "магнитного дутья": Это классический технический прием для гашения электрической дуги в высоковольтных выключателях. Мощные магниты располагают так, чтобы сила Лоренца растягивала дугу, заставляя ее двигаться вдоль дугогасительной камеры. При движении дуга контактирует с холодными стенками камеры, интенсивно охлаждается, и ее сопротивление растет, пока она не погаснет.

Если прикрепить мощные неодимовые магниты с противоположными полюсами по бокам от дуги, вы увидите следующие эффекты:

▪️ Отклонение дуги: Дуга будет не просто прыгать между электродами, а будет изогнутой, похожей на арку или букву "С".
▪️ Движение дуги: Если расположить магниты особым образом (например, создав поле, перпендикулярное плоскости дуги), можно заставить дугу быстро вращаться вокруг электродов. Это выглядит как яркое, светящееся "огненное колесо".
▪️ Удлинение и охлаждение: Растянутая дуга становится длиннее, что приводит к ее охлаждению. Она может стать более бледной и менее стабильной.
▪️ Ускоренное гашение: Если источник питания не может поддерживать растянутую и охлажденную дугу, она может погаснуть быстрее, чем без магнитов.

⚡️Практическое применение и предостережения:

1. Плазменные резаки и сварочные аппараты: В некоторых современных плазменных резаках используются магнитные системы для стабилизации и вращения плазменной струи. Это повышает качество и равномерность реза.
2. Исследования термоядерного синтеза (Токамак): Это самый масштабный пример. Гигантские сверхпроводящие магниты используются для удержания и стабилизации плазмы, не давая ей коснуться стенок реактора.
3. Высоковольтные выключатели: Как уже упоминалось, для принудительного гашения дуги.

Если вы прикрутите мощные неодимовые магниты к электродам с дугой, вы не просто увидите реакцию плазмы — вы станете свидетелем фундаментального физического явления, которое лежит в основе многих современных технологий. Дуга будет активно изгибаться и двигаться под действием магнитного поля, демонстрируя прямую связь между электричеством и магнетизмом. #электродинамика #магнетизм #физика #опыты #physics #наука #эксперименты

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥41👍20117🤯2
This media is not supported in your browser
VIEW IN TELEGRAM
🧲 Диамагнитная беговая дорожка

Набор
из пяти концентрических неодимовых магнитов, чередующихся N-S-N-S-N, образует беговую дорожку и формирует поле захвата, над которой парят тонкие слои пиролитического графита.
Пиролитический графит (иногда пирографит) — форма графита. Он обычно используется как инструмент калибровки для микроскопических исследований, таких как сканирующая туннельная микроскопия или атомно-силовая микроскопия. Пиролитический графит получают нагреванием смеси кокса и пека до 2800 °C; из газообразных углеводородов при температуре 1400—1500 °C в вакууме с последующим нагреванием образовавшегося пироуглерода до температуры 2500—3000 °C при давлении 50 МПа (образовавшийся продукт — пирографит). Пиролитический графит или пирографит — один из самых интересных видов углерода. Он является отличным диамагнетиком (веществом, намагничивающимся против направления внешнего магнитного поля). Его плотность составляет 2200 кг/м³. #физика #факты #химия #опыты #магнетизм #physics #диамагнетики

💡 Physics.Math.Code // @physics_lib
👍6118🔥131😍1
🔔 Оксфордский электрический звонок: самый долгий научный эксперимент в мире, длящийся с 1840 года

В коридоре Оксфордского университета стоит невзрачный на вид прибор, который тихо звонит уже почти 185 лет. Этот эксперимент начался в 1840 году, и с тех пор Оксфордский электрический звонок (также известный как Clarendon Dry Pile) работает практически без остановок, став символом невероятной долговечности и загадки для научного сообщества.

Устройство выглядит просто: два латунных колокольчика, между которыми колеблется металлический шарик-маятник диаметром около 4 мм. Под колокольчиками скрыта сухая батарея — так называемый «замбониев столб», изобретенный итальянским физиком Джузеппе Замбони в 1812 году.

Батарея создает высокое напряжение (предположительно около 2 кВ). Когда маятник касается одного колокольчика, он заряжается и отталкивается от него, притягиваясь к противоположному. При касании второго колокольчика процесс повторяется. Шарик колеблется с частотой 2 Гц, что приводит к непрерывному звону.

Ключевая особенность — чрезвычайно низкое энергопотребление. Батарея отдает крошечный ток, которого хватило на века работы. Сама батарея герметично залита серой, что защищает ее от влаги и окисления.

Точный химический состав батареи остается неизвестным. Ученые предполагают, что это усовершенствованный вариант батареи Замбони, состоящий из тысяч чередующихся слоев: металлической фольги (возможно, цинк) и бумажных дисков, пропитанных электролитом (например, диоксидом марганца).

Однако вскрыть батарею для изучения невозможно — это прервет уникальный эксперимент. Профессор Роберт Уокер, приобретший звонок в 1840 году, не оставил записей о ее устройстве, и тайна остается нераскрытой.

В 1984 году звонок был внесен в Книгу рекордов Гиннесса как «самый долговечный источник энергии». По подсчетам, он совершил уже более 10 миллиардов ударов.

Звонок демонстрирует принципы электростатики и пределы энергоэффективности. Его используют в дискуссиях о втором законе термодинамики, хотя сам он не является «вечным двигателем» — работа закончится, когда батарея исчерпает ресурс или износятся механические части.

Можно ли услышать звонок сегодня — да. Звонок до сих пор находится в Кларендонской лаборатории Оксфордского университета, за двумя стеклянными панелями (они приглушают звук). Услышать его могут студенты, ученые и туристы, но из-за тихого звука требуется прислушаться. #электродинамика #магнетизм #физика #опыты #physics #наука #эксперименты

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
96🔥68👍40🤔115💯3🆒1
Media is too big
VIEW IN TELEGRAM
⚡️ Опыты Фарадея 🧲

29 августа 1831 года знаменитый английский физик Майкл Фарадей после 10 лет экспериментов открыл явление электромагнитной индукции. Это явление состоит в возникновении ЭДС индукции в замкнутом контуре при изменении магнитного потока через поверхность, ограниченную этим контуром.

Некоторые опыты Майкла Фарадея, которые имеют наибольшее значение для теории электромагнетизма:

🔸 Опыт с катушкой и магнитом. Взаимодействие движущегося магнита и катушки, намотанной из проводника, порождает электрический ток. При введении магнита в катушку в цепи возникает электрический ток одного направления (стрелка гальванометра отклоняется, например, вправо), при выведении магнита из катушки стрелка отклоняется в противоположную сторону.

🔸 Опыт с двумя катушками. По одной из них пропускали ток, к другой был подключён гальванометр. В момент начала или окончания пропускания тока по первой катушке стрелка гальванометра, подключённого ко второй, колебалась. Этот опыт показывал, что не только магнетизм можно превратить в электричество, но и электричество в магнетизм.

Видеопримеры по теме:

🔥 Индукционный нагрев

💫 «Гроб Мухаммеда»

🧲 Как работают трансформаторы?

⚡️ Основные физические понятия электродинамики (Леннаучфильм)

Взаимодействие зарядов. Электростатическая индукция

💫 Исследование электрических полей. Опыт по физике

⚡️ Уравнения Максвелла

⚙️ Электромагнитная подвеска 🧲

#видеоуроки #physics #физика #опыты #электродинамика #электричество #магнетизм #эксперименты #научные_фильмы

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍49🔥18166
Media is too big
VIEW IN TELEGRAM
⚡️ DIY: Сварка от конденсаторной батареи — физика для гаражных самоделок

На видео экстремальный DIY: самодельный сварочный аппарат, чье сердце — не трансформатор, а мощная батарея конденсаторов. Идея проста до гениальности: мы накапливаем в конденсаторах огромное количество энергии, а затем разряжаем ее за доли секунды на металл, который нужно сварить.

Физика процесса:

1. Накопление энергии: По формуле E = (C ⋅ U²) / 2, где E — энергия в Джоулях, C — емкость в Фарадах, U — напряжение в Вольтах. К примеру, батарея на 100 000 мкФ (0,1 Ф), заряженная до 50 В, запасает (0.1 ⋅ 50²)/2 = 125 Дж. Это сравнимо с ударом молотка, но сосредоточено в крошечной точке!
2. Мгновенный разряд: Вся эта энергия высвобождается почти мгновенно. Сила тока при коротком замыкании может достигать сотен и даже тысяч Ампер! Здесь вступает в дело Закон Джоуля-Ленца: Q = I² ⋅ R ⋅ t. Мощность нагрева (I²⋅R) колоссальна из-за гигантского тока I и мизерного времени t.
3. Почему металл плавится? В точке контакта сопротивление R максимально. Огромный ток, проходя через него, вызывает интенсивный нагрев, мгновенно расплавляя металл и создавая сварочную точку.

⚠️ Предупреждение: Это опасный эксперимент! Конденсаторы на высокое напряжение могут сохранять заряд и убить разрядом тока. Короткое замыкание приводит к ослепительной вспышке, ультрафиолетовому излучению и разбрызгиванию металла. Не повторяйте без глубоких знаний и мер защиты.

💥 Этот метод — кустарная реализация промышленной контактной сварки, изобретенной в далеком 1877 году американцем Элиху Томсоном. Любопытно, что Томсон изначально поспорил с коллегой, что сможет сварить два куска металла. Он пропустил через них ток от динамо-машины и, сдвинув их, получил прочное соединение. Его установка была прямым предком нашего сегодняшнего эксперимента.

▪️Конденсаторы: Идеальны — электролитические, с низким ESR (эквивалентным последовательным сопротивлением), рассчитанные на высокое напряжение (например, от компьютерных блоков питания, но лучше — специальные мощные).
▪️Зарядное устройство: Нужен источник питания, способный безопасно зарядить батарею до нужного напряжения.
▪️Электроды: Обычно используют мощные медные щупы или стержни. Медь обладает низким сопротивлением и не прилипает к свариваемому металлу.
▪️Управление: Вся система должна управляться через реле или мощный ключ (например, MOSFET/IGBT) для безопасности оператора.

Собрать такой аппарат — это как провести урок электродинамики у себя в гараже. Это наглядная демонстрация того, как потенциальная энергия электрического поля превращается в тепловую мощь, способную плавить сталь. А вы пробовали такое изобретать? #видеоуроки #physics #физика #опыты #электродинамика #электричество #магнетизм #эксперименты #научные_фильмы

⚡️ Опыты Фарадея

🔥 Индукционный нагрев

💫 «Гроб Мухаммеда»

🧲 Как работают трансформаторы?

⚡️ Основные физические понятия электродинамики (Леннаучфильм)

Взаимодействие зарядов. Электростатическая индукция

💫 Исследование электрических полей. Опыт по физике

⚡️ Уравнения Максвелла

⚙️ Электромагнитная подвеска 🧲

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥4224👍214🤯2❤‍🔥1🤩1😍1🤨1
🧲 Магия, которую объясняет физика: Диамагнитная левитация ⚡️

Есть материалы, которые настолько «не любят» магнитные поля, что отталкиваются от них. Их называют диамагнетиками. В отличие от ферромагнетиков (железо, магнит), которые притягиваются, диамагнетики всегда выталкиваются из магнитного поля.
Когда диамагнетик помещают в сильное магнитное поле, в его атомах наводятся микроскопические токи, которые создают собственное магнитное поле, направленное строго против внешнего. Получается мини-война полей, и предмет парит!

🐸 Самый знаменитый пример — левитирующая лягушка (да, ученые действительно заставили лягушку парить в мощном пол соленоида!). Но для этого нужны огромные поля (соленоид с большим током при очень низких температурах и с индукцией около 10 Тл.)

Более доступный и красивый эксперимент, который вы могли видеть: магнит, левитирующий над сверхпроводником. Сверхпроводник в состоянии сверхпроводимости — идеальный диамагнетик, он выталкивает магнитное поле с огромной силой (эффект Мейснера).

А самый простой домашний эксперимент: графитовый стержень от карандаша, парящий над мощными неодимовыми магнитами, выстроенными в ряд. Графит — отличный диамагнетик! Сила отталкивания очень слаба. Чтобы поднять что-то тяжелое, нужны невероятно мощные магниты. Но для небольших объектов магия становится реальностью. Принцип: Под воздействием внешнего магнита в атомах диамагнетика возникают микротоки. Они создают свое поле, которое является полной противоположностью внешнему. Как два одинаковых полюса магнита, которые отталкиваются.

Элемент 83 (Висмут) является самым диамагнитным элементом. Здесь небольшой неодимовый магнит плавает между двумя 10-миллиметровыми кубами из 99% висмута, которые удерживаются в точной конфигурации за счет трения о параллельные стенки акриловой сборки. Диамагнитные вещества имеют собственные магнитные поля только тогда, когда они помещены во внешнее магнитное поле от другого источника — здесь крошечный кубический магнит создает поле. Диамагнитные поля довольно слабые, поэтому мощный цилиндрический неодимовый магнит расположен над кубами и отрегулирован так, чтобы помочь поднять крошечный кубический магнит против силы тяжести.

Охлаждение сверхпроводника жидким азотом способствует его следованию вдоль магнитной ленты (Эффект Мейсснера)

Диамагнетики: Это материалы, такие как пиролитический графит (сильный диамагнетик), медь, висмут, вода и даже человеческое тело.

Противодействие полю: Когда диамагнетик помещают в сильное внешнее магнитное поле (создаваемое неодимовыми магнитами), в материале индуцируются слабые токи. Эти токи создают собственное магнитное поле, которое всегда направлено противоположно внешнему полю.

Левитация: Возникает сила магнитного отталкивания, которая стремится вытолкнуть диамагнетик из области сильного магнитного поля в область более слабого. Если эта сила отталкивания становится больше, чем сила тяжести, действующая на объект, то объект левитирует.

Пиролитический графит — это один из самых сильных диамагнетиков при комнатной температуре, что делает его идеальным материалом для наглядной демонстрации левитации без использования дорогостоящих сверхпроводников или экстремально сильных магнитных полей.

Неодимовые Магниты (N-S-N-S-N): Служат для создания поля захвата (так называемой магнитной ловушки). Чередование полюсов (N-S-N-S-N) создает сильный градиент магнитного поля (резкое изменение напряженности поля). Именно градиент, а не просто сила поля, необходим для устойчивой левитации. Такая конфигурация магнитов удерживает тонкие пластины графита в устойчивом положении: они не могут выскользнуть из "ловушки" и парят, не требуя внешнего контроля или энергии (помимо силы магнитов).
#видеоуроки #physics #физика #опыты #электродинамика #электричество #магнетизм #эксперименты #научные_фильмы

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1🔥4617👍165❤‍🔥2
This media is not supported in your browser
VIEW IN TELEGRAM
🧲 Магнитная левитация волчка в потенциальной яме индукции внешнего магнитного поля 💤

Над платформой с магнитами (постоянными или катушками с током) раскручивают волчок, а затем убирают подставку — и он продолжает парить и крутиться в воздухе. Какая физика в основе?

▪️ 1. Магнитная левитация: В основании волчка и на подставке установлены сильные неодимовые магниты, обращенные друг к другу одноименными полюсами (север к северу или юг к югу). Они отталкиваются, создавая силу, направленную против гравитации. Этой силы как раз хватает, чтобы удерживать вес волчка в воздухе.

▪️ 2. Гироскопический эффект (стабилизация): Одного отталкивания мало. Если бы волчок не вращался, он бы просто перевернулся, так как положение «вверх тормашками» на отталкивающих магнитах неустойчиво. Но раскрученный волчок — это гироскоп. Гироскоп стремится сохранить ориентацию своей оси вращения в пространстве. Эта гироскопическая стабильность не дает волчку опрокинуться и заставляет его прецессировать вокруг магнитной оси, оставаясь в устойчивом парении.

📐 Особенности конструкции:
1. Сильные магниты: Обычно это неодимовые (NdFeB) магниты. От их силы зависит высота левитации.
2. Диамагнитный стабилизатор (секретный ингредиент): В самых стабильных конструкциях снизу часто устанавливают пластину из диамагнетика (например, пиролитического графита или меди). Диамагнетики слабо отталкиваются от любого магнитного поля. Эта пластина создает дополнительную «восстанавливающую силу», которая не дает волчку улететь в сторону и делает левитацию невероятно стабильной. Без нее волчок было бы очень сложно удержать в центре.
3. Идеальный вес и балансировка: Волчок должен быть идеально сбалансированным. Его вес должен в точности компенсироваться магнитной подъемной силой на определенной высоте.

👨‍🔬 Кто первый? Хотя подобные эффекты изучались и раньше, популяризатором именно этой элегантной демонстрации с волчком считается американский физик Рой Харриготен (Roy Harrigan), который запатентовал подобное устройство в начале 1980-х. Позже, в 2000-х, профессор Ларри Спир (Larry Spring) и знаменитый популяризатор науки Профессор Магги (Prof. Maggy) из Англии доработали и показали миру этот опыт в своих лекциях, сделав его вирусным. Парящий волчок — это не иллюзия, а физическая система, где магнитное отталкивание борется с гравитацией, а гироскопический эффект обеспечивает устойчивость. #видеоуроки #physics #физика #опыты #электродинамика #электричество #магнетизм #эксперименты #научные_фильмы

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍40🔥21186❤‍🔥2🤔1
This media is not supported in your browser
VIEW IN TELEGRAM
💫 ЭМ поле и ртуть. Почему она крутится? 🌀

Под действием электрического поля ртуть отдает один или два своих валентных электрона, образуя электроположительные ионы, и поэтому она может проводить электричество. Однако, атомы ртути (Hg) прочно удерживают свои валентные электроны и с трудом предоставляют их в «общее пользование». Но когда начинает течь ток, кристаллическая решётка ртути оказывается неустойчивой. В опыте имеем скрещенные поля: электрическое поле E и магнитное поле B, вектора которых направлены под углом π/2. В таких полях заряженные частицы из-за силы Лоренца двигаются по траектории, представляющей собой эпициклоиду. Но для наблюдателя кажется, что мы имеем вихревой круговой поток ртути. Разумеется, четкую математическую эпициклоиду получить не получится, ведь мы должны учитывать огромное множество заряженных частиц, а для более корректного описания придется подключать уравнение Навье - Стокса. В совокупности с неустойчивостью ДУ и неоднородных граничных условий описание потока представляет собой очень сложную математическую задачу. #гидродинамика #механика #электричество #магнетизм #физика #physics #видеоуроки #gif

💡 Physics.Math.Code // @physics_lib
1👍40❤‍🔥118🤔654🔥4