Physics.Math.Code
143K subscribers
5.2K photos
2.05K videos
5.81K files
4.45K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

№ 6045941532

Обратная связь: @physicist_i
Download Telegram
This media is not supported in your browser
VIEW IN TELEGRAM
🔊 Ультразвуковая пластина (мембрана, пьезоизлучатель) — ключевой элемент увлажнителя воздуха. Она преобразует обычную воду в мельчайший туман, который увлажняет воздух в помещении.

Принцип действия: на пластину подают высокочастотное напряжение. Под его воздействием мембрана колеблется, в водяном слое появляются волны пониженного и повышенного давления, чередующиеся между собой. В зоне низкого давления жидкость «вскипает» при невысокой температуре, происходит выброс водяного аэрозоля.

▪️Генерация ультразвуковых волн (обратный пьезоэлектрический эффект). На пластину подают электрические колебания от генератора, и под их действием она расширяется и сжимается по толщине. Это вызывает колебания, которые излучают ультразвуковые волны.
▪️Приём ультразвуковых волн (прямой пьезоэлектрический эффект). Под действием ультразвуковой волны пластина испытывает сжатия и растяжения, и в результате прямого пьезоэффекта между обкладками возникает электрическое напряжение, пропорциональное акустическому давлению волны.

Для генерации продольных колебаний используют деформацию растяжения-сжатия, для генерации поперечных — сдвиговую деформацию. Преобразователь с такой пластиной прижимают к поверхности изделия через слой контактной жидкости, в результате в изделии возникают продольные волны, направленные под прямым углом к поверхности.

Пьезоэлектрический эффект — явление, при котором под воздействием механического напряжения или деформации в кристалле возникает электрическая поляризация, величина и знак которой зависят от направления и значения приложенного напряжения. Собственная частота колебаний в пьезопластине пропорциональна скорости звука в материале пластины и её толщине. Чем тоньше пластина, тем выше её собственная частота. На практике под влиянием конструктивных элементов пьезоэлектрического преобразователя, непосредственно контактирующих с пьезопластиной, собственная частота немного изменяется. Частоту, которую возбуждает преобразователь, называют рабочей частотой. #физика #опыты #колебания #волны #пьезодинамика #physics #gif #гидродинамика

💡 Physics.Math.Code // @physics_lib
👍9541🔥25🤯42
😠 Резонанс в тибетской чаше: почему вода «закипает»?

Это магическое зрелище: водишь деревянным стиком по краю тибетской чаши, а внутри спокойная вода вдруг начинает бурлить, будто вскипела! 🫧 Но так ли это на самом деле? Давайте разбираться с точки зрения физики.
Короткий ответ: Нет, вода не кипит. Её температура не меняется. А вот что происходит на самом деле — это чистой воды резонанс и стоячие волны.

🎻 Что такое резонанс? Представьте, что вы раскачиваете кого-то на качелях. Если толкать в самый подходящий момент (в такт), качели будут взлетать все выше и выше. Это и есть резонанс — резкое возрастание амплитуды колебаний системы, когда на нее воздействуют с ее собственной частотой. Тибетская чаша — это не просто металлическая посудина, а идеальный резонатор. У нее, как у колокола, есть своя собственная (резонансная) частота колебаний.

Что происходит, когда мы водим стиком?

1. Создание колебаний: Трение стика о край чаши (часто с босом — специальной палочкой) передает ей энергию. Вы заставляете стенки чаши вибрировать с определенной частотой.
2. Поиск резонанса: Когда скорость и давление трения подобраны правильно, вы «ловите» резонансную частоту чаши. Чаша начинает вибрировать особенно интенсивно, издавая тот самый гудящий звук и заметно вибрируя.
3. Передача энергии воде: Эти мощные механические колебания от стенок чаши передаются воде, налитой на дно.

Вода — это жидкость, и она прекрасно передает колебания. Но что мы видим?
▪️Стоячие волны: На поверхности воды образуются не обычные волны, а стоячие волны. Это такие волны, которые осциллируют на месте. У них есть неподвижные точки (узлы) и точки с максимальной амплитудой (пучности).
▪️Кавитация: Иногда колебания настолько сильные, что в некоторых точках волны давление резко падает. Это приводит к явлению под названием кавитация — образованию крошечных пузырьков пара и газа, которые тут же схлопываются. Именно эти лопающиеся пузырьки и создают эффект бурления и «кипения», хотя вода остается холодной!

Итог в виде фактов:
〰️ Вода НЕ кипит в смысле нагревания до 100°C.
〰️ Эффект «кипения» — это холодный процесс, вызванный мощными механическими колебаниями.
〰️ Явление основано на резонансе и образовании стоячих волн.
〰️ Пузырьки — это в основном результат кавитации.

Это прекрасный пример того, как законы физики создают почти магические зрелища. #физика #резонанс #кавитация #волны #наука #physics #science #standingwave #cavitation

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
5634👍34❤‍🔥7🔥4👏2🌚2
This media is not supported in your browser
VIEW IN TELEGRAM
🌪 Теория относительности — это комплекс из двух теорий, которые описывают свойства пространства, времени и гравитации. Они были предложены Альбертом Эйнштейном в начале XX века. Смотреть полный фильм: 🕰 Что такое теория относительности [20 мин фильм]

▪️ Специальная теория относительности. Описывает поведение объектов, которые движутся с постоянной скоростью. Теория утверждает, что время и пространство не являются абсолютно фиксированными для всех наблюдателей — они могут изменяться в зависимости от скорости объекта. Некоторые принципы специальной теории относительности:
— Принцип относительности — законы физики одинаковы для всех наблюдателей, независимо от того, находятся ли они в покое или движутся с постоянной скоростью относительно других объектов.
— Постоянство скорости света — скорость света всегда одинаковая (примерно 300 000 км/с) и не зависит от того, как быстро движется источник света или наблюдатель.

▫️ Общая теория относительности. Расширяет идеи специальной теории относительности и объясняет гравитацию. Теория утверждает, что гравитация — это не сила, а искривление пространства-времени, вызванное массой и энергией объектов. Некоторые принципы общей теории относительности:
— Эквивалентность гравитации и ускорения — невозможно отличить действие гравитации от ускоренного движения.
— Гравитационное замедление времени — часы идут медленнее вблизи массивных объектов, например, рядом с чёрной дырой время почти останавливается. #физика #теория_относительности #оптика #опыты #эксперименты #physics #видеоуроки #научные_фильмы #свет #волны #СТО #ОТО #science

🖥 Против теории относительности и Эйнштейна // Алексей Семихатов, Владимир Сурдин / Вселенная Плюс

👨🏻‍💻 Видеолекции по теории поля и СТО [Часть 1]

👨🏻‍💻 Видеолекции по теории поля и СТО [Часть 2]

📚 3 книги по теории относительности

☀️ Физика света / The Physics of Light [2014]

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
38👍338🔥6❤‍🔥4🤯3🙈2😭1
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 Сравнение скорости движения пули и скорости разрушения стекла

Когда разбивается стекло, трещина распространяется со скоростью 4828 км/ч. Такую скорость невозможно заметить обычным взглядом, только с помощью высокоскоростной съёмки. Стекло разбивается со скоростью несколько тысяч метров в секунду. Пуля, выпущенная из автомата, например, АК-47 или винтовки НАТО G3, имеет меньшую скорость – до тысячи метров в секунду. #видеоуроки #механика #разрушения #колебания #волны #физика #physics

📚 Механика разрушений [12 книг]

⛓️ ⚙️ Механика разрушения материалов (видео)

💡 Physics.Math.Code // @physics_lib
4👍57🔥288🤯51
This media is not supported in your browser
VIEW IN TELEGRAM
Можно ли поставить дом на шары, чтобы спасти его от землетрясения? 🏠

Почему простые шары не сработают? Представьте дом на четырех бильярдных шарах. Проблемы:
→ Они могут выкатиться в сторону.
→ Давление в точке контакта огромно, и шар просто продавит пол.
→ Любой порыв ветра заставит дом качаться.

А что тогда сработает? Инженеры давно разработали системы, которые отделяют здание от вибраций при землетрясениях. Это как поставить дом на "амортизаторы".

1. Сейсмические изоляторы (Сейсмоизоляция):
Маятниковые изоляторы: Представьте не шар, а огромную "линзу", внутри которой стальной шар качается по специальной чаше. При землетрясении здание плавно "раскачивается" на этой чаше, как маятник, гася энергию.
Слинговые изоляторы: Здесь используются опорные конструкции, работающие на растяжение, которые позволяют зданию качаться в определенных пределах.
Рельсовые системы: Здание устанавливается на специальные рельсы, позволяя ему смещаться при подземных толчках.

2. Сейсмические гасители (Демпферы). Если изоляторы — это "подвеска", то демпферы — это "тормоза". Их ставят внутри здания, чтобы поглощать энергию колебаний. Бывают:
Вязкостные: Как гигантские амортизаторы в автомобиле.
Массовые (динамические гасители): Огромный шар или маятник на верхних этажах, который раскачивается в противофазе основным колебаниям и гасит их. Знаменитый Тайбэй 101 использует такой 660-тонный шар!

3. Сейсмические компенсаторы (Тросовые системы)
Системы стальных тросов и растяжек, которые перераспределяют нагрузку и не дают зданию сложиться, как карточный домик.

Идея "катящейся опоры" — гениальна в своей основе, и инженеры воплотили ее в жизнь, создав сложные и надежные системы сейсмической изоляции. Благодаря им современные здания в сейсмоопасных зонах могут пережить даже очень сильные толчки, сохранив жизни людей и свою целостность. #землетрясение #строительство #инженерия #технологии #геология #архитектура #механика #разрушения #колебания #волны #физика #physics #эксперименты

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍50🔥1817😱3❤‍🔥11🗿1