This media is not supported in your browser
VIEW IN TELEGRAM
🔥 Свечение газов вблизи катушки Тесла
Коллекция газов для спектрального излучения: чистые образцы водорода, азота и пяти благородных инертных газов подвергаются воздействию высокочастотного импульсного поля миниатюрной катушки Тесла. Каждый газ имеет характерное напряжение пробоя и спектр излучения. Обратите внимание, что азот имеет самое высокое напряжение пробоя и светится только в непосредственной близости от катушки, где поле наиболее интенсивно, тогда как у неона и гелия самое низкое напряжение пробоя, и они начинают светиться на большем расстоянии от катушки. Цвет каждого газа обусловлен сочетанием цветов, излучаемых электронными энергетическими переходами, характерными для каждого элемента - основы спектроскопии. Трубка Криптона также демонстрирует интересные колебания с этой конкретной катушкой Теслы. #атомная_физика #химия #физика #physics #видеоуроки #электроника #gif
💡 Physics.Math.Code // @physics_lib
Коллекция газов для спектрального излучения: чистые образцы водорода, азота и пяти благородных инертных газов подвергаются воздействию высокочастотного импульсного поля миниатюрной катушки Тесла. Каждый газ имеет характерное напряжение пробоя и спектр излучения. Обратите внимание, что азот имеет самое высокое напряжение пробоя и светится только в непосредственной близости от катушки, где поле наиболее интенсивно, тогда как у неона и гелия самое низкое напряжение пробоя, и они начинают светиться на большем расстоянии от катушки. Цвет каждого газа обусловлен сочетанием цветов, излучаемых электронными энергетическими переходами, характерными для каждого элемента - основы спектроскопии. Трубка Криптона также демонстрирует интересные колебания с этой конкретной катушкой Теслы. #атомная_физика #химия #физика #physics #видеоуроки #электроника #gif
💡 Physics.Math.Code // @physics_lib
❤86🔥44👍19🤩6⚡3
This media is not supported in your browser
VIEW IN TELEGRAM
🪙 Разбираемся в пайке: Советы по соотношению олова и свинца и их влиянию
Эволюция технологий пайки в электронной промышленности ознаменовалась кардинальным переходом от традиционных припоев на основе свинца к экологически безопасным бессвинцовым альтернативам. В течение многих лет пайка на основе свинца, в основном с использованием сплавов олово-свинец, была отраслевым стандартом, ценившимся за доступность и превосходные физические свойства. Однако растущая осведомленность об опасностях для окружающей среды и здоровья, связанных со свинцом, привела к ужесточению правил, что побудило к исследованию и внедрению решений для бессвинцовой пайки. Припой на основе свинца относится к типу припоя, который содержит свинец в качестве одного из основных компонентов. Наиболее распространенной рецептурой припоя на основе свинца является сплав олово-свинец (Sn-Pb), в котором соотношение олова и свинца обычно составляет около 60:40. Это определенное соотношение часто называют эвтектическим составом, где сплав имеет определенную температуру плавления, что позволяет ему напрямую переходить из твердого состояния в жидкое и наоборот.
Бессвинцовый припой — это тип припоя, который не содержит свинца в качестве одного из своих основных компонентов. Переход к бессвинцовой пайке вызван проблемами окружающей среды и здоровья, связанными с использованием припоев на основе свинца. Различные бессвинцовые припои были разработаны в качестве альтернативы традиционному припою олово-свинец (Sn-Pb) с целью сохранить рабочие характеристики и надежность паяных соединений, одновременно устраняя токсичное воздействие свинца. Температура плавления бессвинцового припоя может находиться в диапазоне от 50 до 200 °C и выше. Для достаточной смачивающей способности бессвинцового припоя требуется примерно 2% флюса по массе.
Доступно несколько бессвинцовых припоев, и производители могут выбрать тот, который лучше всего соответствует их конкретным требованиям. Некоторые распространенные бессвинцовые припои включают в себя:
▪️ Олово-Висмут (Sn-Bi): Этот сплав имеет более низкую температуру плавления по сравнению с другими бессвинцовыми альтернативами, что делает его пригодным для применений, где желательны более низкие температуры пайки.
▪️ Олово-Серебро (Sn-Ag): Этот сплав без меди является еще одним популярным бессвинцовым сплавом. Он обеспечивает хорошую стойкость к термической усталости и широко используется в производстве электроники.
▪️ Олово-Цинк (Sn-Zn): Этот сплав используется в некоторых составах бессвинцовых припоев, предлагая альтернативу без использования серебра или меди.
#пайка #химия #схемотехника #физика #physics #видеоуроки #научные_фильмы #опыты
💡 Physics.Math.Code // @physics_lib
Эволюция технологий пайки в электронной промышленности ознаменовалась кардинальным переходом от традиционных припоев на основе свинца к экологически безопасным бессвинцовым альтернативам. В течение многих лет пайка на основе свинца, в основном с использованием сплавов олово-свинец, была отраслевым стандартом, ценившимся за доступность и превосходные физические свойства. Однако растущая осведомленность об опасностях для окружающей среды и здоровья, связанных со свинцом, привела к ужесточению правил, что побудило к исследованию и внедрению решений для бессвинцовой пайки. Припой на основе свинца относится к типу припоя, который содержит свинец в качестве одного из основных компонентов. Наиболее распространенной рецептурой припоя на основе свинца является сплав олово-свинец (Sn-Pb), в котором соотношение олова и свинца обычно составляет около 60:40. Это определенное соотношение часто называют эвтектическим составом, где сплав имеет определенную температуру плавления, что позволяет ему напрямую переходить из твердого состояния в жидкое и наоборот.
Бессвинцовый припой — это тип припоя, который не содержит свинца в качестве одного из своих основных компонентов. Переход к бессвинцовой пайке вызван проблемами окружающей среды и здоровья, связанными с использованием припоев на основе свинца. Различные бессвинцовые припои были разработаны в качестве альтернативы традиционному припою олово-свинец (Sn-Pb) с целью сохранить рабочие характеристики и надежность паяных соединений, одновременно устраняя токсичное воздействие свинца. Температура плавления бессвинцового припоя может находиться в диапазоне от 50 до 200 °C и выше. Для достаточной смачивающей способности бессвинцового припоя требуется примерно 2% флюса по массе.
Доступно несколько бессвинцовых припоев, и производители могут выбрать тот, который лучше всего соответствует их конкретным требованиям. Некоторые распространенные бессвинцовые припои включают в себя:
▪️ Олово-Висмут (Sn-Bi): Этот сплав имеет более низкую температуру плавления по сравнению с другими бессвинцовыми альтернативами, что делает его пригодным для применений, где желательны более низкие температуры пайки.
▪️ Олово-Серебро (Sn-Ag): Этот сплав без меди является еще одним популярным бессвинцовым сплавом. Он обеспечивает хорошую стойкость к термической усталости и широко используется в производстве электроники.
▪️ Олово-Цинк (Sn-Zn): Этот сплав используется в некоторых составах бессвинцовых припоев, предлагая альтернативу без использования серебра или меди.
#пайка #химия #схемотехника #физика #physics #видеоуроки #научные_фильмы #опыты
💡 Physics.Math.Code // @physics_lib
👍56❤28🤔7🔥4🙈1
This media is not supported in your browser
VIEW IN TELEGRAM
Результаты археологических раскопок позволяют утверждать, что пайка как средство соединения металлов известна человеку не мене пяти тысячелетий. В 1927-1928 гг. археолог Леонард Вуллей при раскопках города Ура на Евфрате обнаружил гробницу царицы Шуб-ат с золотыми сосудами, ручки которых были припаяны серебряно-золотым сплавом. Всё это относится к 3500 году до н.э. #факты #пайка #металлы #железо #химия #научные_фильмы #gif
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍85🔥33❤20❤🔥5🆒4⚡2😱1😈1
Media is too big
VIEW IN TELEGRAM
Самой яркой и наглядной демонстрацией эффекта является резка (фактически — откалывание) стекла обыкновенными ножницами в воде. Таким образом получится вырезать из стекла практически любую фигуру. В физикеэффект Ребиндера — это снижение твёрдости и пластичности материала, в частности металлов, под воздействием поверхностно-активной плёнки. Эффект назван в честь советского учёного Петра Александровича Ребиндера, который впервые описал этот эффект в 1928 году. Предлагаемое объяснение этого эффекта заключается в разрушении поверхностных оксидных плёнок и снижении поверхностной энергии с помощью поверхностно-активных веществ. Этот эффект особенно важен при механической обработке, поскольку смазочные материалы снижают силу резания.
Эффект Ребиндера
#физика #адсорбция #physics #science #химия #видеоуроки #наука #опыты #эксперименты
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍96🔥35❤14🤔5❤🔥4✍2🤯2😱2
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
🔥 Физический парадокс: Галлий — металл, который не верит в правила
Вы держали в руках металл, который плавится от тепла ладони? Нет, это не мистический металл из фэнтези, это самый что ни на есть реальный галлий. И его физические свойства способны удивить даже искушённый ум. Вот несколько фактов, которые заставят вас посмотреть на металлы по-новому:
▪️1. Металл-хамелеон: Твёрдый и жидкий одновременно
Галлий плавится при температуре всего 29.76 °C. Это значит, что в жаркий летний день он — лужица, а в прохладной комнате — твёрдый слиток. Положите кусочек в руку, и вы станете свидетелем фазового перехода прямо у себя на ладони! Это одно из немногих простых веществ с такой аномалией.
▪️2. Он ненавидит замерзать
Самое интересное начинается при застывании. В отличие от воды и почти всех других веществ, жидкий галлий имеет большую плотность, чем твёрдый. При затвердевании он расширяется примерно на 3.2%. Представьте: вы плавите его, а при остывании он не сжимается, а, наоборот, пытается «разбухнуть». Это уникальное свойство связано с особенностью его кристаллической решётки.
▪️3. Металл в «сверхтекучести»
Из-за очень сильного поверхностного натяжения в жидком состоянии галлий ведёт себя почти как ртуть — скатывается в шарики. Но есть фокус и поинтереснее: если его медленно охлаждать, можно получить переохлаждённый галлий. Он может оставаться жидким при температурах значительно ниже точки плавления (до -20 °C!), пока его не ткнуть — тогда он мгновенно кристаллизуется. Наглядный урок о метастабильных состояниях!
▪️4. Аномалия проводимости
Как и положено металлу, галлий проводит электрический ток. Но вот в чём загвоздка: в жидком состоянии его электропроводность примерно на 30% выше, чем в твёрдом! Обычно при плавлении проводимость падает из-за роста хаотичности. У галлия же при плавлении разрушается особая димерная структура, и электронам становится «проще» двигаться.
▪️5. «Ядовитое рукопожатие» для алюминия
Чисто физический, но очень эффектный феномен: жидкий галлий катастрофически разрушает кристаллическую решётку алюминия. Достаточно каплю галлия на алюминиевую ложку — и через несколько часов она станет хрупкой и рассыплется. Это не химическая реакция, а процесс межкристаллитной диффузии и разрушения межатомных связей. Наглядный пример того, как один материал может радикально изменить механические свойства другого.
Галлий — не просто игрушка. Без его соединений (арсенида галлия, нитрида галлия) не было бы ваших смартфонов, LED-ламп и высокочастотной микроэлектроники. Он — незаменимый солдат в арсенале материаловедения.
Вывод: Галлий ломает стереотипы о том, как должен вести себя «нормальный» металл. Он напоминает нам, что физика — это не скучный учебник, а мир полный удивительных аномалий и парадоксов. #физика #наука #металлы #химия #physics #эксперименты #технологии
💡 Physics.Math.Code // @physics_lib
Вы держали в руках металл, который плавится от тепла ладони? Нет, это не мистический металл из фэнтези, это самый что ни на есть реальный галлий. И его физические свойства способны удивить даже искушённый ум. Вот несколько фактов, которые заставят вас посмотреть на металлы по-новому:
▪️1. Металл-хамелеон: Твёрдый и жидкий одновременно
Галлий плавится при температуре всего 29.76 °C. Это значит, что в жаркий летний день он — лужица, а в прохладной комнате — твёрдый слиток. Положите кусочек в руку, и вы станете свидетелем фазового перехода прямо у себя на ладони! Это одно из немногих простых веществ с такой аномалией.
▪️2. Он ненавидит замерзать
Самое интересное начинается при застывании. В отличие от воды и почти всех других веществ, жидкий галлий имеет большую плотность, чем твёрдый. При затвердевании он расширяется примерно на 3.2%. Представьте: вы плавите его, а при остывании он не сжимается, а, наоборот, пытается «разбухнуть». Это уникальное свойство связано с особенностью его кристаллической решётки.
▪️3. Металл в «сверхтекучести»
Из-за очень сильного поверхностного натяжения в жидком состоянии галлий ведёт себя почти как ртуть — скатывается в шарики. Но есть фокус и поинтереснее: если его медленно охлаждать, можно получить переохлаждённый галлий. Он может оставаться жидким при температурах значительно ниже точки плавления (до -20 °C!), пока его не ткнуть — тогда он мгновенно кристаллизуется. Наглядный урок о метастабильных состояниях!
▪️4. Аномалия проводимости
Как и положено металлу, галлий проводит электрический ток. Но вот в чём загвоздка: в жидком состоянии его электропроводность примерно на 30% выше, чем в твёрдом! Обычно при плавлении проводимость падает из-за роста хаотичности. У галлия же при плавлении разрушается особая димерная структура, и электронам становится «проще» двигаться.
▪️5. «Ядовитое рукопожатие» для алюминия
Чисто физический, но очень эффектный феномен: жидкий галлий катастрофически разрушает кристаллическую решётку алюминия. Достаточно каплю галлия на алюминиевую ложку — и через несколько часов она станет хрупкой и рассыплется. Это не химическая реакция, а процесс межкристаллитной диффузии и разрушения межатомных связей. Наглядный пример того, как один материал может радикально изменить механические свойства другого.
Галлий — не просто игрушка. Без его соединений (арсенида галлия, нитрида галлия) не было бы ваших смартфонов, LED-ламп и высокочастотной микроэлектроники. Он — незаменимый солдат в арсенале материаловедения.
Вывод: Галлий ломает стереотипы о том, как должен вести себя «нормальный» металл. Он напоминает нам, что физика — это не скучный учебник, а мир полный удивительных аномалий и парадоксов. #физика #наука #металлы #химия #physics #эксперименты #технологии
💡 Physics.Math.Code // @physics_lib
❤114🔥77👍19✍17🆒6❤🔥3
This media is not supported in your browser
VIEW IN TELEGRAM
🌀 Различия в свойствах мягких припоев
Эти обозначения (# Tin или # Sn) не указывают напрямую на химический состав, а указывают на прочность на растяжение (tensile strength) припоя, выраженную в фунтах на квадратный дюйм (psi). Давайте разберем по порядку.
▪️ # в данном контексте означает "фунт" (pound). Цифра перед ним — это значение прочности на растяжение в тысячах фунтов на квадратный дюйм (ksi).
▪️ Примеры: 45# Sn означает припой с прочностью на растяжение 45 000 psi. или 99# Tin означает припой с прочностью на растяжение 99 000 psi.
Чем выше это число, тем прочнее соединение, полученное с помощью этого припоя.
▪️ Tin (англ.) или Sn (лат. Stannum) — это Олово. Указание "Tin" или "Sn" говорит о том, что этот припой содержит олово, но не говорит о его точном процентном содержании.
▪️ Эта система (ASTM B32) была распространена в США до того, как повсеместно стали использовать маркировку по химическому составу. Со временем для самых популярных марок сложились устойчивые соответствия.
➰ 30# Tin / Sn — Аналог ПОС-50 — Sn50Pb50 (50% олова, 50% свинца) — Радиомонтаж, общие работы. Низкая температура плавления.
➰ 45# Sn — Близок к ПОС-40 — Sn40Pb60 (40% олова, 60% свинца) — Более тугоплавкий, для неответственных соединений.
➰ 63# Sn — ПОС-63 (самый распространенный) — Sn63Pb37 (63% олова, 37% свинца) — Эвтектический припой. Идеален для электромонтажа: низкая Тпл, быстро переходит из жидкой в твердую фазу, мало склонен к образованию "холодных паек".
➰ 99# Tin — Sn95Sb5 (95% олова, 5% сурьмы) — Бессвинцовый припой. Высокая прочность, используется для пайки трубопроводов, радиаторов, в пищевой промышленности. Устойчив к ползучести и усталости.
Совет: Для современного электромонтажа (пайка электроники) золотым стандартом долгое время был 63# Sn (Sn63Pb37). Сейчас, с переходом на бессвинцовые технологии, чаще используются составы типа SAC305 (Sn96.5Ag3.0Cu0.5), которые маркируются уже по своему химическому составу. #факты #пайка #металлы #железо #химия #научные_фильмы #gif
🔥 В древние времена среди металлов наибольшим спросом пользовалась....
🔥 Сварка трением (фрикционная сварка)
✨ Как сделать сварочный аппарат из карандаша и лезвия
Какой флюс для пайки самый лучший на сегодняшний день?
🪙 Разбираемся в пайке: Советы по соотношению олова и свинца и их влиянию
🔥 10 флюсов для пайки: сравнение, тесты и какой реально стоит использовать мастеру
🔥 Сварка под слоем флюса
✨ Мартенсит
⛓️💥 Какие только технологии не применяли в СССР
⚡️ Большие токи в нескольких витках провода вызывают существенное магнитное поле.
💥 Лазерная сварка с разной формой луча
🔥 Spot-сварка
💥 Импульсная аргонодуговая сварка
💥 Электросварка и плавление электрода 💫
💡 Physics.Math.Code // @physics_lib
Эти обозначения (# Tin или # Sn) не указывают напрямую на химический состав, а указывают на прочность на растяжение (tensile strength) припоя, выраженную в фунтах на квадратный дюйм (psi). Давайте разберем по порядку.
▪️ # в данном контексте означает "фунт" (pound). Цифра перед ним — это значение прочности на растяжение в тысячах фунтов на квадратный дюйм (ksi).
▪️ Примеры: 45# Sn означает припой с прочностью на растяжение 45 000 psi. или 99# Tin означает припой с прочностью на растяжение 99 000 psi.
Чем выше это число, тем прочнее соединение, полученное с помощью этого припоя.
▪️ Tin (англ.) или Sn (лат. Stannum) — это Олово. Указание "Tin" или "Sn" говорит о том, что этот припой содержит олово, но не говорит о его точном процентном содержании.
▪️ Эта система (ASTM B32) была распространена в США до того, как повсеместно стали использовать маркировку по химическому составу. Со временем для самых популярных марок сложились устойчивые соответствия.
➰ 30# Tin / Sn — Аналог ПОС-50 — Sn50Pb50 (50% олова, 50% свинца) — Радиомонтаж, общие работы. Низкая температура плавления.
➰ 45# Sn — Близок к ПОС-40 — Sn40Pb60 (40% олова, 60% свинца) — Более тугоплавкий, для неответственных соединений.
➰ 63# Sn — ПОС-63 (самый распространенный) — Sn63Pb37 (63% олова, 37% свинца) — Эвтектический припой. Идеален для электромонтажа: низкая Тпл, быстро переходит из жидкой в твердую фазу, мало склонен к образованию "холодных паек".
➰ 99# Tin — Sn95Sb5 (95% олова, 5% сурьмы) — Бессвинцовый припой. Высокая прочность, используется для пайки трубопроводов, радиаторов, в пищевой промышленности. Устойчив к ползучести и усталости.
Совет: Для современного электромонтажа (пайка электроники) золотым стандартом долгое время был 63# Sn (Sn63Pb37). Сейчас, с переходом на бессвинцовые технологии, чаще используются составы типа SAC305 (Sn96.5Ag3.0Cu0.5), которые маркируются уже по своему химическому составу. #факты #пайка #металлы #железо #химия #научные_фильмы #gif
✨ Как сделать сварочный аппарат из карандаша и лезвия
Какой флюс для пайки самый лучший на сегодняшний день?
🪙 Разбираемся в пайке: Советы по соотношению олова и свинца и их влиянию
🔥 10 флюсов для пайки: сравнение, тесты и какой реально стоит использовать мастеру
✨ Мартенсит
⛓️💥 Какие только технологии не применяли в СССР
🔥 Spot-сварка
💥 Импульсная аргонодуговая сварка
💥 Электросварка и плавление электрода 💫
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥47👍31❤25✍3🤩2⚡1🙈1
This media is not supported in your browser
VIEW IN TELEGRAM
🧲 Диамагнитная беговая дорожка
Набор из пяти концентрических неодимовых магнитов, чередующихся N-S-N-S-N, образует беговую дорожку и формирует поле захвата, над которой парят тонкие слои пиролитического графита.
Пиролитический графит (иногда пирографит) — форма графита. Он обычно используется как инструмент калибровки для микроскопических исследований, таких как сканирующая туннельная микроскопия или атомно-силовая микроскопия. Пиролитический графит получают нагреванием смеси кокса и пека до 2800 °C; из газообразных углеводородов при температуре 1400—1500 °C в вакууме с последующим нагреванием образовавшегося пироуглерода до температуры 2500—3000 °C при давлении 50 МПа (образовавшийся продукт — пирографит). Пиролитический графит или пирографит — один из самых интересных видов углерода. Он является отличным диамагнетиком (веществом, намагничивающимся против направления внешнего магнитного поля). Его плотность составляет 2200 кг/м³. #физика #факты #химия #опыты #магнетизм #physics #диамагнетики
💡 Physics.Math.Code // @physics_lib
Набор из пяти концентрических неодимовых магнитов, чередующихся N-S-N-S-N, образует беговую дорожку и формирует поле захвата, над которой парят тонкие слои пиролитического графита.
Пиролитический графит (иногда пирографит) — форма графита. Он обычно используется как инструмент калибровки для микроскопических исследований, таких как сканирующая туннельная микроскопия или атомно-силовая микроскопия. Пиролитический графит получают нагреванием смеси кокса и пека до 2800 °C; из газообразных углеводородов при температуре 1400—1500 °C в вакууме с последующим нагреванием образовавшегося пироуглерода до температуры 2500—3000 °C при давлении 50 МПа (образовавшийся продукт — пирографит). Пиролитический графит или пирографит — один из самых интересных видов углерода. Он является отличным диамагнетиком (веществом, намагничивающимся против направления внешнего магнитного поля). Его плотность составляет 2200 кг/м³. #физика #факты #химия #опыты #магнетизм #physics #диамагнетики
💡 Physics.Math.Code // @physics_lib
👍61❤18🔥13⚡1😍1