This media is not supported in your browser
    VIEW IN TELEGRAM
  Google выпустили LiteRT-LM - фреймворк для запуска LLM прямо на устройстве (offline), с минимальной задержкой и без API-вызовов.
Если вы пилите приложения, это полезная штука, потому что:
- Работает на устройстве: нет задержек от удалённых серверов
- Нет расходов на API
- Дает доступ к Локальному GenAI
🔍 Основное
- LiteRT-LM уже используется внутри Gemini Nano / Gemma в Chrome, Chromebook Plus и Pixel Watch.
- Открытый C++ интерфейс (preview) для интеграции в кастомные решения.
- Архитектура: Engine + Session
• Engine хранит базовую модель, ресурсы - общий для всех функций
• Session - контекст для отдельных задач, с возможностью клонирования, копирования “по записи” (Copy-on-Write) и лёгких переключений
- Поддержка аппаратного ускорения (CPU / GPU / NPU) и кроссплатформенность (Android, Linux, macOS, Windows и др.)
- Для Pixel Watch используется минимальный “pipeline” - только необходимые компоненты - чтобы уложиться в ограничения памяти и размера бинарей
Google опенсорснули целый стек для запуска GenAI на устройствах:
- LiteRT быстрый «движок», который запускает отдельные AI-модели на устройстве.
- LiteRT-LM - интерфейс C++ для работы с LLM. Он объединяет сразу несколько инстурментов : кэширование промптов, хранение контекста, клонирование сессий и т.д.
- LLM Inference API - готовые интерфейсы для разработчиков (Kotlin, Swift, JS). Работают поверх LiteRT-LM, чтобы можно было легко встраивать GenAI в приложения.
@ai_machinelearning_big_data
#AI #Google #LiteRT #LiteRTLM #GenAI #EdgeAI #OnDeviceAI #LLM
Please open Telegram to view this post
    VIEW IN TELEGRAM
  👍96❤31🔥19💘4
  Позволяет создать нативные приложенийяпрямо внутри ChatGPT.
Идея простая: теперь не нужно выходить из ChatGPT, чтобы делать привычные вещи.
Можно прямо в чате работать с дизайном в Figma, создавать презентации в Canva, искать жильё на Booking или смотреть курсы на Coursera — всё в одном окне.
Платформа поддерживает авторизацию, оплату и подключение внешних сервисов,
а значит, ChatGPT становится центром, где совмещаются ИИ, приложения и автоматизация задач.
Скоро разработчики (вайбкодеры) смогут добавлять свои приложения и зарабатывать на них через ChatGPT SDK.
По сути это убийца n8n и Zapier.
Это интуитивно понятный**визуальный конструктор**, где можно создавать своих ИИ-агентов без единой строчки кода.
Просто перетаскиваешь блоки, подключаешь MCP и ChatKit — и агент сам ищет файлы, анализирует данные и выполняет задачи.
Инструмент уже доступен всем.
OpenAi умеют в дизайн, должно быть удобно.
Можно уже попробовать: https://platform.openai.com/agent-builder
Вышел из беты, получил интеграцию со Slack и собственный SDK.
На демо агент управлял светом и экраном голосом - без кода.
На презентации заявили, что теперь почти весь их код пишется с помощью Codex
Благодаря Codex разработчики OpenAI стали отправлять на 70% больше pull-request’ов в неделю, чем раньше.
Теперь у кодекса появляется интеграция со Slack и SDK, чтобы разработчики могли встраивать его в свои рабочие процессы.
Прямо в эфире Codex написал код для управления камерой, сам собрал интерфейс и **запустил готовое при
$15 за ввод и $120 за вывод за 1M токенов
Gpt-realtime-mini - на 70% дешевле, подходит для мгновенных ответов и потоковых задач
Можно будет генерировать видео прямо из кода
PS: Agent Builder выглядит действительно интересно - интуитивный, гибкий, инструмент с большим потенциало
м.
А вот насколько полезными окажутся приложения внутри ChatGPT, не особо понятно.
OpenAI не боится экспериментировать.
Они развивают ChatGPT как платформу, ищут
новые варианты захвата рынка и пробуют смелые идеи. Это дорогого стоит.
Их интерфейс просто топ: минимализм, аккуратность, почти в духе Apple. UX - на уровне искусства.
У OpenAI уже более 800 млн активных пользователей в неделю и они обрабатывают 6 миллиардов токенов в минуту!
К концу года число пользователей, похоже, вплотную подойдёт к 1 миллиарду.
Но гонка только начинается.
Google явно готовит ответ - Gemini 3 обещает быть топом. Другие игроки тоже не дремлют.
@ai_machinelearning_big_data
#openai #chatgpt #llm #ml #ai
Please open Telegram to view this post
    VIEW IN TELEGRAM
  1👍662🔥301❤209🎉178👏104😁77🤔53🤩41🤣15👌13🙈13
  Модель умеет рассуждать на основе изображений, понимать сложные визуально-текстовые задачи и поддерживает мультиязычные кейсы.
Ключевые особенности:
- Visual Reasoning - глубокое понимание изображений и сцен
- Multilingual Support - работа с несколькими языками
- Visual Dialogue - позволяет весть диалог на основе изображения и текста
- Thinking-on-Image - рассуждение на уровне визуальных деталей
HunyuanVision-1.5 демонстрирует продвинутые способности в задачах анализа, генерации и рассуждения. Работает шустро, русский понимает, но не без косяков.
Модель доступна для использования через Tencent Cloud API и LMArena (Direct Chat).
Полный технический отчёт и веса обещают к релизу позже в октябре. Ждемс.
@ai_machinelearning_big_data
#Tencent #llm #ml #Hunyuan #vlm
Please open Telegram to view this post
    VIEW IN TELEGRAM
  Please open Telegram to view this post
    VIEW IN TELEGRAM
  👍198🎉146❤37🔥20👏16😁12🤩12🥰3👌3💘2
  AI21 представила Jamba 3B - компактную модель, которая обошла Qwen 3 4B и IBM Granite 4 Micro по качеству рассуждений.
Более высокая эффективность, в сравнении с AI21 - 2–5× улучшение в производительности по сравнению с конкурентами за счёт меньшего KV-кэша и гибридной архитектуры.
Секрет в архитектуре:
🔹 сочетание Transformer attention и Mamba state-space слоёв.
🔹 Mamba-часть эффективно обрабатывает длинные последовательности без тяжёлых attention-кэшей,
🔹 а Transformer-слои сохраняют способность к сложным рассуждениям.
Результат, модель кушает меньше памяти, выдает высокую скорость и плавно работает даже на ноутбуках, GPU и мобильных устройствах.
📏 Контекст: до 256K токенов.
⚡ Скорость: около 40 токенов/сек даже на длинных контекстах, тогда как другие модели резко замедляются.
На графике “интеллект против скорости” Jamba 3B опережает Gemma 3 4B, Llama 3.2 3B и Granite 4.0 Micro, демонстрируя высший интеллект и более быструю генерацию.
🟢 Подробнее: huggingface.co/ai21labs/AI21-Jamba-Reasoning-3B
@ai_machinelearning_big_data
#AI #LLM #Jamba3B #AI21 #Mamba #Transformer #DeepLearning
Более высокая эффективность, в сравнении с AI21 - 2–5× улучшение в производительности по сравнению с конкурентами за счёт меньшего KV-кэша и гибридной архитектуры.
Секрет в архитектуре:
🔹 сочетание Transformer attention и Mamba state-space слоёв.
🔹 Mamba-часть эффективно обрабатывает длинные последовательности без тяжёлых attention-кэшей,
🔹 а Transformer-слои сохраняют способность к сложным рассуждениям.
Результат, модель кушает меньше памяти, выдает высокую скорость и плавно работает даже на ноутбуках, GPU и мобильных устройствах.
📏 Контекст: до 256K токенов.
⚡ Скорость: около 40 токенов/сек даже на длинных контекстах, тогда как другие модели резко замедляются.
На графике “интеллект против скорости” Jamba 3B опережает Gemma 3 4B, Llama 3.2 3B и Granite 4.0 Micro, демонстрируя высший интеллект и более быструю генерацию.
@ai_machinelearning_big_data
#AI #LLM #Jamba3B #AI21 #Mamba #Transformer #DeepLearning
Please open Telegram to view this post
    VIEW IN TELEGRAM
  Please open Telegram to view this post
    VIEW IN TELEGRAM
  ❤52🔥23👍13🤔4💘2
  Это подборка интерактивных ноутбуков, демонстрирующих возможности Qwen3-VL - как при локальном запуске, так и через API.
Внутри - десятки реальных примеров с разборами:
▪ Работа с изображениями и рассуждение по ним
▪ Агент для взаимодействия с интерфейсами (Computer-Use Agent)
▪ Мультимодальное программирование
▪ Распознавание объектов и сцен (Omni Recognition)
▪ Продвинутое извлечение данных из документов
▪ Точное определение объектов на изображении
▪ OCR и извлечение ключевой информации
▪ 3D-анализ и привязка объектов
▪ Понимание длинных документов
▪ Пространственное рассуждение
▪ Мобильный агент
▪ Анализ и понимание видео
@ai_machinelearning_big_data
#Qwen #Qwen3VL #AI #VisionLanguage #Multimodal #LLM
Please open Telegram to view this post
    VIEW IN TELEGRAM
  ❤81🔥26👍22💘1
  Метод помогает увидеть на какие внутренние признаки опирается ИИ, когда формирует ответы без переобучения всей модели.
В основе — дополнительный автоэнкодер, который обучается на остаточной ошибке базовой модели и вылавливает редкие, специализированные сигналы, влияющие на решение модели. Sae Boost уже протестировали на тестах по химии, документах ООН и русскоязычном контенте – метод показал значительное улучшение качества реконструкции (explained variance) и снижения перекрестной энтропии LLM (LLM cross-entropy) на специализированных доменах.
@ai_machinelearning_big_data
#news #ai #ml #llm
Please open Telegram to view this post
    VIEW IN TELEGRAM
  ❤46👍21🔥6💘2🌭1
  Новая архитектура Mamba-3 делает модели быстрее, стабильнее и эффективнее при работе с длинными контекстами.
Главная идея - не в слоях внимания, а в state-space моделях, где модель хранит и обновляет внутреннее состояние во времени.
📘 Краткие эускурс:
- Mamba-1 ввела непрерывную динамику и выборочное обновление памяти - помнила эффективно без высокой цены attention.
- Mamba-2 показала, что обновления состояния и attention - это две стороны одной математики, что ускорило вычисления на GPU.
- Mamba-3 довела концепцию до зрелости: теперь внутренняя память развивается плавнее и устойчивее за счёт перехода от простого шага Эйлера к трапецеидальному интегрированию.
Вместо простого шага Эйлера, как в Mamba-2, Mamba-3 аппроксимирует интеграл обновления состояния не только по правому концу интервала, но усреднением между началом и концом, с коэффициентом λ, зависящим от данных. Это даёт более точное приближение (второго порядка) и делает динамику состояния более выразительной.
🧠 Что изменилось под капотом:
- Память стала «ритмичной»: теперь модель может хранить повторяющиеся и периодические паттерны (например, структуры языка или музыки).
- Новый multi-input-multi-output дизайн позволяет обрабатывать несколько потоков параллельно — идеально для современных GPU.
⚙️ Что это даёт на практике:
- Эффективная работа с длинными последовательностями: документы, геномы, временные ряды.
- Линейное время выполнения и стабильная задержка делают её идеальной для реального времени: чат-ботов, перевода, речи.
- Энергоэффективность и масштабируемость открывают путь к on-device AI, где большие модели работают локально, без облака.
Mamba-3 - это не просто ускоренная альтернатива Transformers.
Это новая архитектура, которая объединяет глубокое понимание контекста, скорость и устойчивость, от серверных систем до умных устройств.
@ai_machinelearning_big_data
#ssm #mamba3 #llm,#architecture #ai
Please open Telegram to view this post
    VIEW IN TELEGRAM
  Please open Telegram to view this post
    VIEW IN TELEGRAM
  ❤94🔥49👍28🤔6🗿3💘2😁1
  🔥 Сенсей Карпаты выложил новый репозиторий - полный пайплайн обучения LLM с нуля  
В проекте есть всё, чтобы собрать свой ChatGPT-клон за $100 и 4 часа:
> • токенизатор (написан на Rust)
> • pretraining
> • SFT (supervised fine-tuning)
> • RL (reinforcement learning)
> • оценка модели (eval)
Всего 8 000 строк кода, без лишних зависимостей - идеальный учебный пример, чтобы понять, как реально устроено обучение больших языковых моделей.
💡 Это проект из его нового грядущего курса LLM101n, и отличная возможность прокачать свои ML-навыки на практике.
Можно арендовать GPU в облаке и запустить всё самому - код уже готов к запуску.
Если запустить обучение модели nanochat на облачном GPU-сервере (например, 8×H100), то примерно через 12 часов обучения (стоимость ~300–400 $) модель достигает уровня GPT-2 по качеству на тестовых наборах (CORE-score).
А если тренировать около 40 часов (затраты ~1000 $), решает простые задачи по математике и коду, набирая:
- 40+ на MMLU
- 70+ на ARC-Easy
- 20+ на GSM8K
🧠 Это бесплатная практика топ уровня от мастера, которую не стоит упускать.
🟠 GitHub:https://github.com/karpathy/nanochat
🟠 Технические детали: https://github.com/karpathy/nanochat/discussions/1
@ai_machinelearning_big_data
#LLM #nanochat #MachineLearning #DeepLearning #AI #GPT
В проекте есть всё, чтобы собрать свой ChatGPT-клон за $100 и 4 часа:
> • токенизатор (написан на Rust)
> • pretraining
> • SFT (supervised fine-tuning)
> • RL (reinforcement learning)
> • оценка модели (eval)
Всего 8 000 строк кода, без лишних зависимостей - идеальный учебный пример, чтобы понять, как реально устроено обучение больших языковых моделей.
💡 Это проект из его нового грядущего курса LLM101n, и отличная возможность прокачать свои ML-навыки на практике.
Можно арендовать GPU в облаке и запустить всё самому - код уже готов к запуску.
Если запустить обучение модели nanochat на облачном GPU-сервере (например, 8×H100), то примерно через 12 часов обучения (стоимость ~300–400 $) модель достигает уровня GPT-2 по качеству на тестовых наборах (CORE-score).
А если тренировать около 40 часов (затраты ~1000 $), решает простые задачи по математике и коду, набирая:
- 40+ на MMLU
- 70+ на ARC-Easy
- 20+ на GSM8K
🧠 Это бесплатная практика топ уровня от мастера, которую не стоит упускать.
@ai_machinelearning_big_data
#LLM #nanochat #MachineLearning #DeepLearning #AI #GPT
Please open Telegram to view this post
    VIEW IN TELEGRAM
  Please open Telegram to view this post
    VIEW IN TELEGRAM
  🔥174❤49👍26🗿8💘3🥰1
  🔥 Nanochat D32 : микромодель Карпаты за $1000, которая реально работает
Карпаты написал, что завершил обучение Nanochat D32, обученной за 33 часа при бюджете $1000 (вместо $100).
Результаты - удивительно хорошие для такой «крошки»:
- 📈 CORE score: 0.31 (выше, чем у GPT-2 — ~0.26)
- 🧮 GSM8K: с 8% до 20%
- 🚀 Рост виден на всех этапах - pretraining, SFT и RL
Карпати пишет:
💡 Факты:
- Nanochat тренируется с нуля
- Самая маленькая модель Nanochat содержит примерно в тысячу раз меньше параметров, чем GPT-3.
- Обнолвенный скрипт
📎 Подробности и отчёт:
https://github.com/karpathy/nanochat/discussions/8
Карпати уже тестирует веб-чат с моделью (ссылку не публикует, чтобы не обвалили сервер).
Дальше -оптимизация и возможно, переход к следующему уровню масштабирования.
#AI #LLM #Nanochat #Karpathy #AIresearch #OpenSourceAI
Карпаты написал, что завершил обучение Nanochat D32, обученной за 33 часа при бюджете $1000 (вместо $100).
Результаты - удивительно хорошие для такой «крошки»:
- 📈 CORE score: 0.31 (выше, чем у GPT-2 — ~0.26)
- 🧮 GSM8K: с 8% до 20%
- 🚀 Рост виден на всех этапах - pretraining, SFT и RL
Карпати пишет:
> «Не ждите от микромоделей чудес. Они обходятся $100–$1000, а не миллиарды долларов, как у крупных лабораторий.
> Разговаривать с моделью - как с ребёнком из детсада: они милые, ошибаются, путаются, галлюцинируют, но это весело.»
💡 Факты:
- Nanochat тренируется с нуля
- Самая маленькая модель Nanochat содержит примерно в тысячу раз меньше параметров, чем GPT-3.
- Обнолвенный скрипт
run1000.sh уже доступен в репозитории  📎 Подробности и отчёт:
https://github.com/karpathy/nanochat/discussions/8
Карпати уже тестирует веб-чат с моделью (ссылку не публикует, чтобы не обвалили сервер).
Дальше -оптимизация и возможно, переход к следующему уровню масштабирования.
#AI #LLM #Nanochat #Karpathy #AIresearch #OpenSourceAI
🔥81❤24👍13😁2👌1👻1💘1
  🤗 Кто реально двигает open-source ИИ: анализ топ-50 самых скачиваемых моделей на Hugging Face
Исследование показывает, какие организации и типы моделей определяют экосистему открытых моделей.
🔥 Главное:
📦 Топ-50 - это всего 3.4% всех моделей на Hugging Face, но именно они собирают более 80% из 45 миллиардов скачиваний.
Подавляющее большинство активности сосредоточено вокруг небольшой группы лидеров -
именно эти модели формируют лицо всего open-source ИИ.
📉 Размер имеет значение (и чем меньше — тем лучше):
- 92.5% загрузок — модели < 1B параметров
- 86.3% — < 500M
- 70% — < 200M
- 40% — < 100M
Очевидны выводы: в open-source побеждают малые и лёгкие модели, пригодные для локального развёртывания и edge-инференса.
🧠 Популярные направления:
- NLP — 58.1%
- Computer Vision — 21.2%
- Audio — 15.1%
- Multimodal — 3.3%
- Time Series — 1.7%
Кто создаёт самые скачиваемые модели:
- Компании - 63.2% (Google лидер)
- Университеты - 20.7%
- Индивидуальные авторы - 12.1%
- НКО - 3.8%
- Прочие лаборатории - 0.3%
Какие типы моделей побеждают:
- Текстовые энкодеры - 45% всех загрузок
- Декодеры - всего 9.5%
- Энкодер-декодеры - 3%
📌 Несмотря на хайп вокруг LLM, массово скачиваются не гиганты, а утилитарные модельки для интеграции в собственные продукты.
🇺🇸 Лидеры по странам:
США доминируют по всем категориям:
- встречаются 18 раз среди топ-50 скачиваний
- на США приходится 56.4% всех загрузок
Open-source ИИ живёт не за счёт гигантских LLM, а благодаря компактным, быстрым и практичным моделям, мкоторые реально работают в продуктах и проектах.
🟠  Почитать полностью: https://huggingface.co/blog/lbourdois/huggingface-models-stats
@ai_machinelearning_big_data
#AI #HuggingFace #OpenSource #ML #Research #LLM #AITrends
Исследование показывает, какие организации и типы моделей определяют экосистему открытых моделей.
🔥 Главное:
📦 Топ-50 - это всего 3.4% всех моделей на Hugging Face, но именно они собирают более 80% из 45 миллиардов скачиваний.
Подавляющее большинство активности сосредоточено вокруг небольшой группы лидеров -
именно эти модели формируют лицо всего open-source ИИ.
📉 Размер имеет значение (и чем меньше — тем лучше):
- 92.5% загрузок — модели < 1B параметров
- 86.3% — < 500M
- 70% — < 200M
- 40% — < 100M
Очевидны выводы: в open-source побеждают малые и лёгкие модели, пригодные для локального развёртывания и edge-инференса.
🧠 Популярные направления:
- NLP — 58.1%
- Computer Vision — 21.2%
- Audio — 15.1%
- Multimodal — 3.3%
- Time Series — 1.7%
Кто создаёт самые скачиваемые модели:
- Компании - 63.2% (Google лидер)
- Университеты - 20.7%
- Индивидуальные авторы - 12.1%
- НКО - 3.8%
- Прочие лаборатории - 0.3%
Какие типы моделей побеждают:
- Текстовые энкодеры - 45% всех загрузок
- Декодеры - всего 9.5%
- Энкодер-декодеры - 3%
📌 Несмотря на хайп вокруг LLM, массово скачиваются не гиганты, а утилитарные модельки для интеграции в собственные продукты.
🇺🇸 Лидеры по странам:
США доминируют по всем категориям:
- встречаются 18 раз среди топ-50 скачиваний
- на США приходится 56.4% всех загрузок
Open-source ИИ живёт не за счёт гигантских LLM, а благодаря компактным, быстрым и практичным моделям, мкоторые реально работают в продуктах и проектах.
@ai_machinelearning_big_data
#AI #HuggingFace #OpenSource #ML #Research #LLM #AITrends
Please open Telegram to view this post
    VIEW IN TELEGRAM
  Please open Telegram to view this post
    VIEW IN TELEGRAM
  1🔥89❤45❤🔥12👍7✍4💘3😐2🆒2
  Он обучил модель считать, сколько раз буква r встречается в слове strawberry, и использовал этот пример, чтобы показать, как можно наделять маленькие языковые модели новыми навыками через синтетические задачи.
Сначала генерируются диалоги:
«Сколько букв r в слове strawberry?»
и правильные ответы.
После этого модель проходит дообучение (SFT) или обучение с подкреплением (RL), чтобы закрепить навык.
Карпаты объясняет, что для маленьких моделей важно продумывать всё до мелочей, как разнообразить запросы, как устроена токенизация и даже где ставить пробелы.
Он показывает, что рассуждения лучше разбивать на несколько шагов, тогда модель легче понимает задачу.
Nanochat решает задачу двумя способами:
— логически, рассуждая пошагово;
— через встроенный Python-интерпретатор, выполняя вычисления прямо внутри чата.
Идея в том, что даже крошечные LLM можно «научить думать», если правильно подготовить примеры и синтетические данные.
📘 Разбор: github.com/karpathy/nanochat/discussions/164
@ai_machinelearning_big_data
#AI #Karpathy #Nanochat #LLM #SFT #RL #MachineLearning #OpenSource
Please open Telegram to view this post
    VIEW IN TELEGRAM
  Please open Telegram to view this post
    VIEW IN TELEGRAM
  ❤91👍54🔥19🤗3💘3🗿1
  🤖 MiniMax-M2: новая MoE-модель серии MiniMax
MiniMax-M2 переосмысливает эффективность: это 230 млрд параметров (из них активно только 10 млрд) - мощная, быстрая и экономичная модель, которая сочетает интеллект уровня топовых LLM с оптимизацией под агентные применения и программирование.
🔹 Основные особенности
🧠 Интеллект мирового уровня.
По данным *Artificial Analysis*, MiniMax-M2 демонстрирует отличные результаты в математике, науке, программировании, следовании инструкциям и использовании инструментов.
Модель занимает #1 место среди всех open-source моделей по суммарному индексу интеллекта.
💻 Кодинг
Разработана для полного цикла разработкт - от файловых правок до тестировании кода и его автокоррекции.
Модель показывает отличные результаты на Terminal-Bench и (Multi-)SWE-Bench, что делает её эффективной в IDE, терминалах и CI-системах.
🧩 Агентные возможности.
MiniMax-M2 умеет планировать и выполнять сложные цепочки действий через shell, браузер, retrieval и code runners.
В тестах BrowseComp уверенно находит труднодоступные источники и восстанавливается после сбоев, не теряя цепочку рассуждений.
MiniMax M2 построена по принципу GPT-OSS и использует сочетание Full Attention и Sliding Window Attention (SWA). Это помогает эффективно работать с длинным контекстом - часть модели анализирует всё сразу, другая концентрируется на ближайших фрагментах текста.
Каждая attention-голова имеет собственный RMSNorm, а блоки Full Attention и SWA используют разные RoPE-параметры, это повышает гибкость и устойчивость модели.
MiniMax-M2 - это новый стандарт эффективности для AGI-агентов и кодинга: умнее, быстрее и дешевле, чем аналоги.
https://huggingface.co/MiniMaxAI/MiniMax-M2
@ai_machinelearning_big_data
#AI #MiniMax #LLM #ArtificialIntelligence #Benchmarks
MiniMax-M2 переосмысливает эффективность: это 230 млрд параметров (из них активно только 10 млрд) - мощная, быстрая и экономичная модель, которая сочетает интеллект уровня топовых LLM с оптимизацией под агентные применения и программирование.
🔹 Основные особенности
🧠 Интеллект мирового уровня.
По данным *Artificial Analysis*, MiniMax-M2 демонстрирует отличные результаты в математике, науке, программировании, следовании инструкциям и использовании инструментов.
Модель занимает #1 место среди всех open-source моделей по суммарному индексу интеллекта.
💻 Кодинг
Разработана для полного цикла разработкт - от файловых правок до тестировании кода и его автокоррекции.
Модель показывает отличные результаты на Terminal-Bench и (Multi-)SWE-Bench, что делает её эффективной в IDE, терминалах и CI-системах.
🧩 Агентные возможности.
MiniMax-M2 умеет планировать и выполнять сложные цепочки действий через shell, браузер, retrieval и code runners.
В тестах BrowseComp уверенно находит труднодоступные источники и восстанавливается после сбоев, не теряя цепочку рассуждений.
MiniMax M2 построена по принципу GPT-OSS и использует сочетание Full Attention и Sliding Window Attention (SWA). Это помогает эффективно работать с длинным контекстом - часть модели анализирует всё сразу, другая концентрируется на ближайших фрагментах текста.
Каждая attention-голова имеет собственный RMSNorm, а блоки Full Attention и SWA используют разные RoPE-параметры, это повышает гибкость и устойчивость модели.
MiniMax-M2 - это новый стандарт эффективности для AGI-агентов и кодинга: умнее, быстрее и дешевле, чем аналоги.
https://huggingface.co/MiniMaxAI/MiniMax-M2
@ai_machinelearning_big_data
#AI #MiniMax #LLM #ArtificialIntelligence #Benchmarks
🔥54❤25👍12🤗5💘2
  Простой, гибкий и мощный фреймворк от LMMs-Lab для обучения моделей, которые понимают текст, изображения, аудио и видео, всё в одном месте.
Что внутри:
• Поддержка 19+ архитектур, включая:
• Qwen3-VL - обработка изображений в native-разрешении, контекст до 10 000+ токенов
• Qwen2.5-Omni - единая модель для текста, изображений и аудио
• WanVideo - генерация видео из текста/изображений (T2V, I2V, V2V)
• dLLM - диффузионные языковые модели
• LLaVA-OneVision, Bagel, SiT, RAE-SigLip и другие
📜 Лицензия: Apache 2.0 (можно использовать даже в коммерческих проектах)
🔗 GitHub: https://github.com/EvolvingLMMs-Lab/lmms-engine
@ai_machinelearning_big_data
#llm #opensource
Please open Telegram to view this post
    VIEW IN TELEGRAM
  👍55❤28🔥7🤗2🥰1
  ⚡️ Glyph: масштабирование контекста через визуально-текстовую компрессию
В основе модели лежит простая идея : вместо того чтобы кормить модели километровый текст, Glyph превращает его в изображение и обрабатывает через vision-language модель.
Используется LLM-управляемый генетический алгоритм, чтобы подобрать наилучшие параметры визуального отображения текста (шрифт, плотность, макет), балансируя между сжатием и точностью.
Это радикально снижает вычислительные затраты, сохраняя при этом смысловую структуру текста.
При этом точность почти не падает: на задачах с длинным контекстом Glyph работает на уровне современных моделей вроде Qwen3-8B.
При экстремальном сжатии VLM с контекстом 128K может эффективно обрабатывать задачи, эквивалентные 1M+ токенов в традиционных LLM.
Фактически, длинный контекст становится мультимодальной задачей, а не чисто текстовой.
📄 Подробности: arxiv.org/abs/2510.17800
🧩 Веса: huggingface.co/zai-org/Glyph
👉 Репозиторий: github.com/thu-coai/Glyph
@ai_machinelearning_big_data
#AI #LLM #Multimodal #Research #DeepLearning
В основе модели лежит простая идея : вместо того чтобы кормить модели километровый текст, Glyph превращает его в изображение и обрабатывает через vision-language модель.
Используется LLM-управляемый генетический алгоритм, чтобы подобрать наилучшие параметры визуального отображения текста (шрифт, плотность, макет), балансируя между сжатием и точностью.
Это радикально снижает вычислительные затраты, сохраняя при этом смысловую структуру текста.
При этом точность почти не падает: на задачах с длинным контекстом Glyph работает на уровне современных моделей вроде Qwen3-8B.
При экстремальном сжатии VLM с контекстом 128K может эффективно обрабатывать задачи, эквивалентные 1M+ токенов в традиционных LLM.
Фактически, длинный контекст становится мультимодальной задачей, а не чисто текстовой.
📄 Подробности: arxiv.org/abs/2510.17800
🧩 Веса: huggingface.co/zai-org/Glyph
👉 Репозиторий: github.com/thu-coai/Glyph
@ai_machinelearning_big_data
#AI #LLM #Multimodal #Research #DeepLearning
👍76🔥29❤18😨10
  Исследователи из Thinking Machines Lab предложили метод, который может изменить то, как обучаются языковые модели. Он называется on-policy distillation - и учит ИИ не просто копировать, а думать и анализировать свои ошибки.
Обычно «дистилляция» работает просто: большая модель-учитель показывает ответы, а маленькая модель-ученик запоминает их. Это похоже на заучивание по шпаргалке - быстро, но без понимания сути.
В новом подходе всё иначе. Ученик сам решает задачи, а учитель оценивает и направляет - объясняет, где логика сбоит и как улучшить рассуждение. Таким образом, меньшая модель перенимает не только знания, но и способ мышления более крупной модели.
Что показали результаты
Эксперименты проводились на задачах математического и логического рассуждения, где важно не просто выдать правильный ответ, а выстроить цепочку шагов.
Результаты впечатляют:
Модель-ученик после обучения с on-policy distillation показала почти ту же точность, что и гораздо более крупная модель-учитель.
При этом вычислительные затраты снизились в несколько раз, делая модель заметно эффективнее и дешевле.
Кроме того, ученик стал лучше понимать собственные ошибки, что повысило устойчивость и надёжность при решении новых, незнакомых задач.
Почему это важно
On-policy distillation решает ключевую проблему традиционных методов - отсутствие адаптивности.
Модель теперь учится на собственных шагах, как человек, — экспериментирует, ошибается, корректирует поведение и растёт.
Уникальность подхода - в балансе между качеством RL и экономичностью KD. Это реальная схема, где маленькая модель учится “в поле” (реагируя на собственные действия), но без дорогих RL-запусков и сложных reward-моделей.
Это не новый метод обучения, а новая инженерная формула, которая позволяет дешевле «учить» компактные модели, ведущие себя как большие.
Это открывает путь к созданию компактных LLM нового поколения, которые рассуждают почти как топовые модели, но стоят в разы дешевле.
Такие модели можно запускать на edge-устройствах, в автономных агентах и локальных сервисах, где важны скорость, приватность и энергоэффективность.
@ai_machinelearning_big_data
#ThinkingMachines #llm #ml
Please open Telegram to view this post
    VIEW IN TELEGRAM
  Please open Telegram to view this post
    VIEW IN TELEGRAM
  🔥98❤46👍19👏2😁2🤗2
  💰 Microsoft объявила, что достигла соглашения с OpenAI по поводу своей доли владения. 
Основные детали:
• Microsoft теперь владеет 27% акций OpenAI, что оценивается в 135 млрд долларов.
• OpenAI обязалась закупить услуг Azure на сумму 250 млрд долларов.
До тех пор, пока OpenAI официально не объявит о создании AGI, Microsoft остаётся её эксклюзивным облачным и API-партнёром с полными правами на текущие модели и интеграции.
После того как AGI будет подтверждён независимой комиссией, эксклюзивность прекращается, однако Microsoft сохранит права собственности и использования всех технологий, разработанных до появления AGI.
https://openai.com/index/next-chapter-of-microsoft-openai-partnership/
@ai_machinelearning_big_data
#OpenAI #Microsoft #agi #llm
Основные детали:
• Microsoft теперь владеет 27% акций OpenAI, что оценивается в 135 млрд долларов.
• OpenAI обязалась закупить услуг Azure на сумму 250 млрд долларов.
До тех пор, пока OpenAI официально не объявит о создании AGI, Microsoft остаётся её эксклюзивным облачным и API-партнёром с полными правами на текущие модели и интеграции.
После того как AGI будет подтверждён независимой комиссией, эксклюзивность прекращается, однако Microsoft сохранит права собственности и использования всех технологий, разработанных до появления AGI.
https://openai.com/index/next-chapter-of-microsoft-openai-partnership/
@ai_machinelearning_big_data
#OpenAI #Microsoft #agi #llm
❤57👍28👀22😁12🔥8😐7🦄5👻3😨3🤔1👨💻1
  Anthropic проверили, способны ли большие языковые модели осознавать собственные «мысли» и внутренние состояния.
Для эксперимента они использовали технику внедрения концептов - добавления определённого паттерна активности в нейроны модели.
Например, они внедряли сигнал “ALL CAPS” - это шаблон, соответствующий тексту, написанному ЗАГЛАВНЫМИ БУКВАМИ. Если такая активация появляется внутри сети, значит, модель «думает» о тексте, который нужно сделать капсом.
После внедрения исследователи спрашивали модель: *«Ты чувствуешь, что что-то изменилось?»*
В 20% случаев Claude 4.1 правильно замечал вмешательство ещё до того, как сам использовал капс, то есть распознавал изменение внутри себя.
В другом эксперименте учёные подменяли слово в ответе (например, добавляли слово “bread”) и проверяли, осознаёт ли модель, что это не её собственное намерение.
После внедрения мысли Claude начинал считать это слово своим выбором и придумывал обоснования, как будто у него есть память о решении.
Модели также смогли управлять своими внутренними состояниями: по команде «думай об этом» активность усиливалась, по команде «не думай» - ослабевала.
Авторы отмечают -
Интроспекция работает лишь в определённых сценариях - мы пока не знаем, насколько она масштабируема или применима ко всем моделям и задачам
Нужен дальнейший анализ: подтверждение, что то, что мы видим - не просто имитация, а действительно внутренний механизм самосознания
Главный вывод исследования: хотя модели пока далеки от настоящей интроспекции, они уже частично способны “заглядывать внутрь себя” и понимать, что происходит в их нейронных процессах.
https://www.anthropic.com/research/introspection
@ai_machinelearning_big_data
#Anthropic #llm
Please open Telegram to view this post
    VIEW IN TELEGRAM
  1👍296🤔168😐122❤69👏65🔥52🥰34👨💻18✍16🙏16👌7
  🔥 Hugging Face снова выкатили полезные материалы.
Вышел бесплатный плейбук о том, как изнутри строят SOTA-модели.
Без общих слов - только реальные решения и нюансы, которые обычно скрыты внутри исследовательских команд.
Это полноценный мастеркласс на 214 страниц для тех, кто хочет понимать, как устроены современные LLM.
Что внутри:
• Логика построения модели: зачем → что → как
• Как разработчики берут модель и по частям включают/выключают компоненты (или меняют их)
• Архитектура: ключевые выборы и trade-offs
• Искусство подбора и очистки данных
• Как проходит обучение моделей
• Пост-тренинг и RLHF в 2025
• Инфраструктура больших моделей
По первым страницам - уровень деталей как в Ultra-scale playbook.
Ссылка: https://huggingface.co/spaces/HuggingFaceTB/smol-training-playbook#designing-the-model-architecture
@ai_machinelearning_big_data
  
#AI #LLM #MachineLearning #HuggingFace
Вышел бесплатный плейбук о том, как изнутри строят SOTA-модели.
Без общих слов - только реальные решения и нюансы, которые обычно скрыты внутри исследовательских команд.
Это полноценный мастеркласс на 214 страниц для тех, кто хочет понимать, как устроены современные LLM.
Что внутри:
• Логика построения модели: зачем → что → как
• Как разработчики берут модель и по частям включают/выключают компоненты (или меняют их)
• Архитектура: ключевые выборы и trade-offs
• Искусство подбора и очистки данных
• Как проходит обучение моделей
• Пост-тренинг и RLHF в 2025
• Инфраструктура больших моделей
По первым страницам - уровень деталей как в Ultra-scale playbook.
Ссылка: https://huggingface.co/spaces/HuggingFaceTB/smol-training-playbook#designing-the-model-architecture
@ai_machinelearning_big_data
#AI #LLM #MachineLearning #HuggingFace
🔥89❤25🥰9🤩3
  🧨 Kimi представили новую модель - Kimi-Linear-48B-A3B-Base
Команда Moonshot показала KDA - механизм, который соединяет идеи Gated DeltaNet и MLA-компрессии в одну архитектуру. Звучит сложно, но суть очень практичная: модель получает долгую память без раздувания контекста и лишних вычислений.
- KDA (Kimi Delta Attention: основной быстрый attention, улучшает эффективность и reasoning
= MLA (Multi-Head Linear Attention) - помогает точности и стабильности. Модель не пересчитывает всё внимание каждый токен, а фокусируется на изменениях, что снижает затраты.
Соотношение слоёв: ~3 части KDA : 1 часть ML.
Модель в основном работает на «дельта-внимании» (KDA), а MLA помогает сохранять качество:
- модель сама выбирает, что забывать, а что держать
- это даетустойчивость при большом контексте выше
- меньше распада длинных зависимостей
Kimi-Linear хороша тем, что даёт почти уровень больших LLM на длинных контекстах, но при этом заметно экономит память и работает быстрее за счёт линейной архитектуры.
Что улучшили:
- требует до 75% меньше памяти на KV-кэш
- до 6.3× быстрее декодирование на длинных контекстах
Как устроена:
- гибридный подход: Kimi Delta Attention + MLA
- модель хорошо оптимизирована под длиннный контекст и высокую пропускную способность
По бенчмаркам модель обгоняет и MLA, и GDN-H, включая задачи с длинным контекстом. В задачах на рассуждения и длинную RL-генерацию Kimi-Linear показывает заметно лучшие результаты, чем MLA.
Архитектура модели пример того, как линейные attention-архитектуры выходят на уровень, где они конкурируют с классическими решениями не только по скорости, но и по качеству.
🟠 Github: github.com/MoonshotAI/Kimi-Linear
🟠 Hf: https://huggingface.co/moonshotai/Kimi-Linear-48B-A3B-Instruct
@ai_machinelearning_big_data
#Kimi #llm
Команда Moonshot показала KDA - механизм, который соединяет идеи Gated DeltaNet и MLA-компрессии в одну архитектуру. Звучит сложно, но суть очень практичная: модель получает долгую память без раздувания контекста и лишних вычислений.
- KDA (Kimi Delta Attention: основной быстрый attention, улучшает эффективность и reasoning
= MLA (Multi-Head Linear Attention) - помогает точности и стабильности. Модель не пересчитывает всё внимание каждый токен, а фокусируется на изменениях, что снижает затраты.
Соотношение слоёв: ~3 части KDA : 1 часть ML.
Модель в основном работает на «дельта-внимании» (KDA), а MLA помогает сохранять качество:
- модель сама выбирает, что забывать, а что держать
- это даетустойчивость при большом контексте выше
- меньше распада длинных зависимостей
Kimi-Linear хороша тем, что даёт почти уровень больших LLM на длинных контекстах, но при этом заметно экономит память и работает быстрее за счёт линейной архитектуры.
Что улучшили:
- требует до 75% меньше памяти на KV-кэш
- до 6.3× быстрее декодирование на длинных контекстах
Как устроена:
- гибридный подход: Kimi Delta Attention + MLA
- модель хорошо оптимизирована под длиннный контекст и высокую пропускную способность
По бенчмаркам модель обгоняет и MLA, и GDN-H, включая задачи с длинным контекстом. В задачах на рассуждения и длинную RL-генерацию Kimi-Linear показывает заметно лучшие результаты, чем MLA.
Архитектура модели пример того, как линейные attention-архитектуры выходят на уровень, где они конкурируют с классическими решениями не только по скорости, но и по качеству.
@ai_machinelearning_big_data
#Kimi #llm
Please open Telegram to view this post
    VIEW IN TELEGRAM
  Please open Telegram to view this post
    VIEW IN TELEGRAM
  👍62🔥19❤11👏6