🔦 Генерация изображений на свете, а не на GPU
Исследователи из UCLA представили оптическую генеративную модель (Optical Generative Model).
Она использует свет и линзы вместо вычислительных блоков - то есть картинки рождаются не на чипах, а в физике.
🔬 Как это работает:
1. Лёгкий цифровой энкодер превращает случайный шум в фазовый узор.
2. Этот узор загружается на оптический модулятор света.
3. Свет проходит через дифракционный декодер и прямо на сенсоре формируется изображение.
✔️ Авторами проведены реальные эксперименты: с помощью видимого света и SLM показаны результаты генерации:
- Созданы цифры, лица, бабочки и даже картины в стиле Ван Гога.
- Качество сравнимо с современными диффузионными моделями.
- Есть две версии: мгновенная (один проход) и итеративная (несколько шагов, как у диффузии).
⚡ Чем интересен такой подход
- Подход не требует никакой вычислительной нагрузки.
- Супербыстрая генерация: физика света выполняет то, что GPU делает миллиардами операций.
- Это открывает путь к энергоэффективному ИИ для edge-устройств: AR/VR, мобильные камеры, компактные сенсоры.
⚠️ Ограничения:
- Сложно выравнивать оптические системы.
- Ограничения по точности фазовых масок.
- Зависимость от качества оборудования (шум, битовая глубина).
Но даже с этими проблемами, это первый шаг к новому классу ИИ, где вычисления заменяются чистой оптикой.
Nature: https://www.nature.com/articles/s41586-025-09446-5
@ai_machinelearning_big_data
#AI #OpticalComputing #Photonics #GenerativeA
Исследователи из UCLA представили оптическую генеративную модель (Optical Generative Model).
Она использует свет и линзы вместо вычислительных блоков - то есть картинки рождаются не на чипах, а в физике.
1. Лёгкий цифровой энкодер превращает случайный шум в фазовый узор.
2. Этот узор загружается на оптический модулятор света.
3. Свет проходит через дифракционный декодер и прямо на сенсоре формируется изображение.
- Созданы цифры, лица, бабочки и даже картины в стиле Ван Гога.
- Качество сравнимо с современными диффузионными моделями.
- Есть две версии: мгновенная (один проход) и итеративная (несколько шагов, как у диффузии).
- Подход не требует никакой вычислительной нагрузки.
- Супербыстрая генерация: физика света выполняет то, что GPU делает миллиардами операций.
- Это открывает путь к энергоэффективному ИИ для edge-устройств: AR/VR, мобильные камеры, компактные сенсоры.
⚠️ Ограничения:
- Сложно выравнивать оптические системы.
- Ограничения по точности фазовых масок.
- Зависимость от качества оборудования (шум, битовая глубина).
Но даже с этими проблемами, это первый шаг к новому классу ИИ, где вычисления заменяются чистой оптикой.
Nature: https://www.nature.com/articles/s41586-025-09446-5
@ai_machinelearning_big_data
#AI #OpticalComputing #Photonics #GenerativeA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥109❤29👍16🤔9😨8🤨2🫡2😍1💘1
Четыре новые модели:
- Granite 4.0 H Small - 32B/9B активных параметров
- Granite 4.0 H Tiny - 7B/1B
- Granite 4.0 H Micro - 3B/3B
- Granite 4.0 Micro - 3B/3B
Benchmarking (Artificial Analysis Index):
- Granite 4.0 H Small: 23 балла (на 8 выше Granite 3.3 8B), обходит Gemma 3 27B (22), но уступает Mistral Small 3.2 (29) и Qwen3 30B A3B (37).
- Granite 4.0 Micro: 16 баллов, выше Gemma 3 4B (15) и LFM 2 2.6B (12).
⚡ Token efficiency:
- Granite 4.0 Small — 5.2M токенов
- Granite 4.0 Micro — 6.7M токенов
Обе модели заметно эффективнее Granite 3.3 8B и большинства non-reasoning моделей <40B.
Детали:
- Контекст: до 128K токенов
- Лицензия: Apache 2.0
- Granite 4.0 H Small доступна на Replicate по $0.06 / $0.25 за 1M input/output токенов
- Все модели доступны на Hugging Face
- Модель Micro (3.4B) можно запускать полностью локально.
🔗 Hugging Face: https://huggingface.co/collections/unsloth/granite-40-68ddf64b4a8717dc22a9322d
🔗 Unsloth: https://docs.unsloth.ai/new/ibm-granite-4.0
@ai_machinelearning_big_data
#AI #IBM #Granite4 #LLM #OpenWeights
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1🔥62👏23👍16❤14🥰3💘2🤔1
Физики Гарварда создали первый в мире квантовый компьютер, который работает непрерывно без перезапуска.
Ранее квантовые машины держались миллисекунды, максимум - около 13 секунд.
Новая установка работает более 2 часов и может функционировать бесконечно.
Ключевое новшество - решение проблемы потери атомов: система в реальном времени пополняет кубиты, впрыскивая 300 000 атомов в секунду с помощью оптических инструментов.
Учёные считают, что практические, постоянно работающие квантовые компьютеры могут появиться уже в течение 2 лет - с огромным влиянием на медицину, финансы и научные исследования.
thecrimson
По данным The Information, Anthropic продвигает свою модель Claude как основу для создания enterprise-замен привычных приложений вроде Slack. Компания делает ставку на обучение с подкреплением, чтобы улучшить способности модели к программированию.
Похожую стратегию развивает и xAI Илона Маска, но эксперты сомневаются, что крупные корпорации откажутся от укоренившихся систем вроде SAP или ServiceNow. Более вероятно, что первыми такие AI-first инструменты начнут использовать небольшие стартапы.
Тем временем JPMorgan и другие банки активно заявляют об интеграции решений OpenAI, Anthropic и Google, хотя реальные масштабы затрат пока не соответствуют публичному энтузиазму.
theinformation
Comet, запущенный в июле 2025 года, работает как встроенный ассистент: он умеет анализировать страницы, вытаскивать ключевые детали и серфить по ссылкам, проводя многошаговые исследования.
Perplexity также представила Comet Plus за $5 — партнёрскую подписку, которая открывает доступ к контенту от CNN, The Washington Post, Fortune, Los Angeles Times и Condé Nast (The New Yorker, Wired и др.).
Однако запуск совпал с продолжающимися исками от крупных издателей, включая Dow Jones (The Wall Street Journal) и New York Post, обвиняющих стартап в использовании их материалов для обучения ИИ.
Скачать Comet
TechCrunch пишет, что запуск нового соцприложения Sora 2 вызвал тревогу внутри самой OpenAI. Это TikTok-подобная лента, наполненная видео, созданными ИИ, включая дипфейки самого Сэма Альтмана.
Часть исследователей OpenAI считает, что компания уходит от своей миссии ради хайпового контента. Один из сотрудников прямо заявил: «AI-ленты - пугающие. Я был шокирован, узнав, что мы выпускаем Sora 2…»
Сторонники проекта объясняют, что такие продукты нужны, чтобы финансировать фундаментальные исследования и дать пользователям почувствовать силу технологий. В OpenAI утверждают, что хотят «показать людям что-то классное, чтобы они улыбнулись».
Но вместе с ростом Sora OpenAI рискует повторить судьбу классических соцсетей: зависимость, манипуляции c информацией, проблемы с дипфейками и давлением на метрики вовлечённости.
techcrunch
Китай в 2025 году вложит до 98 млрд долларов, но экспортные ограничения на топовые чипы Nvidia и AMD тормозят прогресс.
Huawei продвигает Ascend 910C, однако по памяти, пропускной способности и софту он уступает решениям Nvidia. США разрешили ограниченные продажи H20 и MI308 в Китай с 15% налогом, но топовые GPU недоступны китацы, и разрыв в производительности всё ещё в пользу американцев.
X
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍89❤41🔥9❤🔥3💘3😁2⚡1🎉1
This media is not supported in your browser
VIEW IN TELEGRAM
Вместо того, чтобы усложнять одну модель, авторы запускают несколько агентов параллельно и затем выбирают лучший результат.
Метод назвили **Behavior Best-of-N (bBoN).
Как работает:
- Каждый агент пробует решить задачу.
- Его действия переводятся в поведенческий нарратив - короткое описание, что реально изменилось на экране.
- Специальный судья сравнивает эти нарративы и выбирает лучший.
Результаты:
- GPT-5 с 10 параллельными агентами → 69.9% успеха
- Для примера у GPT-5 Mini → 60.2%
- Agent S3* набирает на +10% выше предыдущей SOTA
📄 Paper: http://arxiv.org/abs/2510.02250
💻 Code: http://github.com/simular-ai/Agent-S
📝 Blog: http://simular.ai/articles/agent-s3
@ai_machinelearning_big_data
#AI #Agents #AgentS3 #OSWorld #SimularAI #LLM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥57👍19❤17💘3🤔1
Модель объединяет понимание, генерацию и редактирование аудио без привязки к таймстампам. Основой стал новый токенайзер MingTok-Audio, на котором построен единый Speech LLM. Одновременно выпущен бенчмарк для свободного редактирования речи.
GitHub / Tokenizer / Model / Benchmark
Основатель Coursera Эндрю Ын выпустил бесплатный курс по нейросетям.
В курсе: базовые основы Deep Learning, практические задания и советы по построению карьеры в AI.
Первая лекция уже доступна, все материалы и расписание — открыты. Отличный шанс провести выходные с пользой и глубже разобраться в мире нейросетей.
Первая лекция / Расписание
Почти 40% роста ВВП США за последний квартал обеспечили капитальные вложения в технологии, главным образом связанные с AI.
UBS прогнозирует, что расходы компаний на AI-инфраструктуру достигнут $375 млрд в 2025 году и вырастут до $500 млрд в 2026-м. Но основной рост идёт не от самого AI, а от строительства «фабрик мощности» - дата-центров и инфраструктуры. По оценке Brookfield Asset Management, за ближайшие 10 лет в эту сферу уйдёт $7 трлн.
По данным Минторга США, инвестиции в софт и компьютерное оборудование (без учёта зданий дата-центров) дали четверть всего экономического роста за квартал.
Этот всплеск трат меняет и фондовый рынок: как отмечает Deutsche Bank, индекс S&P 500 вырос на 13.81% с начала года, тогда как равновзвешенный вариант прибавил лишь 7.65%. То есть рост обеспечивают в основном «Великолепная семёрка» технологических гигантов.
X
Дети 4–5 классов учатся два часа утром по индивидуальным программам в науке, математике и чтении, а после обеда занимаются проектами и жизненными навыками.
Учителей здесь называют «гидами» - они мотивируют, а не преподают, получая шестизначные зарплаты. Школа утверждает, что её ученики входят в топ-1% по тестам, хотя педагоги скептически относятся к роли ИИ.
Обучение стоит от $40 000 в год, но основатели считают модель примером будущего образования.
cbsnews
Один из величайших математиков современности, Теренс Тао, использовал искусственный интеллект, чтобы решить задачу на MathOverflow о последовательности наименьших общих кратных.
У него было теоретическое подозрение, что ответ отрицательный, но требовались конкретные числовые параметры для построения контрпримера. Сначала Тао просил ИИ сгенерировать Python-код для поиска, но из-за неверных параметров и долгого времени выполнения этот путь оказался неэффективным.
Затем он перешёл к пошаговому алгоритму: ИИ выполнял эвристические расчёты, помогая сузить диапазон параметров. В итоге удалось получить рабочие значения, которые Тао проверил самостоятельно с помощью короткого Python-скрипта, также созданного ИИ.
Такая стратегия позволила сэкономить часы ручного кодирования и отладки: ИИ не только ускорил поиск, но и выявил несколько ошибок в начальных рассуждениях. Этот случай показывает, как современные системы могут становиться реальными ассистентами даже в фундаментальной математике.
mathstodon
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥73❤42👍21🌭2💘1
This media is not supported in your browser
VIEW IN TELEGRAM
Google выпустили LiteRT-LM - фреймворк для запуска LLM прямо на устройстве (offline), с минимальной задержкой и без API-вызовов.
Если вы пилите приложения, это полезная штука, потому что:
- Работает на устройстве: нет задержек от удалённых серверов
- Нет расходов на API
- Дает доступ к Локальному GenAI
🔍 Основное
- LiteRT-LM уже используется внутри Gemini Nano / Gemma в Chrome, Chromebook Plus и Pixel Watch.
- Открытый C++ интерфейс (preview) для интеграции в кастомные решения.
- Архитектура: Engine + Session
• Engine хранит базовую модель, ресурсы - общий для всех функций
• Session - контекст для отдельных задач, с возможностью клонирования, копирования “по записи” (Copy-on-Write) и лёгких переключений
- Поддержка аппаратного ускорения (CPU / GPU / NPU) и кроссплатформенность (Android, Linux, macOS, Windows и др.)
- Для Pixel Watch используется минимальный “pipeline” - только необходимые компоненты - чтобы уложиться в ограничения памяти и размера бинарей
Google опенсорснули целый стек для запуска GenAI на устройствах:
- LiteRT быстрый «движок», который запускает отдельные AI-модели на устройстве.
- LiteRT-LM - интерфейс C++ для работы с LLM. Он объединяет сразу несколько инстурментов : кэширование промптов, хранение контекста, клонирование сессий и т.д.
- LLM Inference API - готовые интерфейсы для разработчиков (Kotlin, Swift, JS). Работают поверх LiteRT-LM, чтобы можно было легко встраивать GenAI в приложения.
@ai_machinelearning_big_data
#AI #Google #LiteRT #LiteRTLM #GenAI #EdgeAI #OnDeviceAI #LLM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍93❤29🔥18💘4
Media is too big
VIEW IN TELEGRAM
По слухам, OpenAI разрабатывает Agent Builder - нативную no-code-платформу для создания автономных ИИ-агентов. Если информация подтвердится, этот инструмент сможет заменить целый стек сервисов вроде Zapier, n8n и Vapi, объединив всё в единую экосистему OpenAI.
Первые отзывы называют интерфейс одним из самых плавных и интуитивных среди всех agent-canvas решений.ентов прямо внутри платформы.
testingcatalog
Польский стартап Pathway представил новую ИИ архитектуру под названием Dragon Hatchling (BDH), которая может решить одну из самых сложных проблем ИИ - генерализацию во времени, то есть способность модели учиться из опыта и делать прогнозы, как это делает человек.
Модель строит структуру, похожую на нейронные сети человеческого мозга, которая формируется спонтанно во время обучения и действует как неокортекс, отвечающий за обучение, память и принятие решений.
В отличие от классических трансформеров, BDH использует локальные нейронные связи и геббовское обучение, что делает её более интерпретируемой и устойчивой к изменению данных. При этом она демонстрирует производительность, сопоставимую с моделями GPT-уровня, но требует меньше вычислительных ресурсов.
Разработчики отмечают, что такая архитектура может приблизить ИИ к человеко-подобному мышлению и пониманию, открывая путь к созданию систем, способных на адаптацию и обучение в реальном времени.
arxiv
Всего 3 млрд активных параметров, но по бенчмарками модель не уступает GPT-5-Mini и Claude 4 Sonnet, обгоняя их в задачах STEM, VQA, OCR, Video и Agent-тестах.
Плюс теперь доступны FP8-версии не только 30B, но и гиганта Qwen3-VL-235B-A22B.
API / Github / Попробовать
Исследователи представили небольшую модель с 7 миллиардами параметров, обученную специально для работы с формами и документами. Несмотря на компактный размер и низкую стоимость обучения - всего $196, модель смогла превзойти GPT-4.1 на тысяче задач по извлечению структурированных данных.
Команда использовала синтетические данные, позволяющие модели сохранять «память» между разными частями длинных файлов и правильно связывать имена, даты и значения, находящиеся далеко друг от друга.
Для обучения применялась Low-Rank Adaptation (LoRA) - изменено всего 0,53% весов, и Group Relative Policy Optimization с семантическим вознаграждением и строгой проверкой JSON-ответов.
Результат - 0,573 среднее вознаграждение, 89% корректных JSON-ответов и производительность выше GPT-4.1, при затратах в сотни раз меньших.
arxiv
WSJ сообщает: Nvidia инвестирует $100 млрд в строительство 10 ГВт дата-центров для OpenAI. Это не благотворительность - компания фактически финансирует собственный спрос.
По расчётам аналитиков, на каждые $10 млрд инвестиций OpenAI обязуется купить GPU Nvidia на $35 млрд. Так Nvidia даёт OpenAI дешёвый капитал и гарантирует себе заказы на годы вперёд.
Это часть большой стратегии: компания уже выкупает простаивающие мощности CoreWeave, инвестирует в Intel и xAI, формируя замкнутую экосистему вокруг своих чипов.
Так Nvidia снижает маржу, но получает главное - контроль над всей энергией и инфраструктурой ИИ-мира.
Wsj
Стартап Neuphonic представил новую систему синтеза речи NeuTTS Air - компактную модель, работающую прямо на устройствах без подключения к облаку.
NeuTTS Air способна реалистично воспроизводить речь и клонировать голос по трёхсекундной записи, оставаясь лёгкой и быстрой. Модель выпускается в формате GGML, что позволяет запускать её на компьютерах, смартфонах и даже на Raspberry Pi.
GitHub
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤69👍24🔥13🥱3❤🔥2💘2💋1
Позволяет создать нативные приложенийяпрямо внутри ChatGPT.
Идея простая: теперь не нужно выходить из ChatGPT, чтобы делать привычные вещи.
Можно прямо в чате работать с дизайном в Figma, создавать презентации в Canva, искать жильё на Booking или смотреть курсы на Coursera — всё в одном окне.
Платформа поддерживает авторизацию, оплату и подключение внешних сервисов,
а значит, ChatGPT становится центром, где совмещаются ИИ, приложения и автоматизация задач.
Скоро разработчики (вайбкодеры) смогут добавлять свои приложения и зарабатывать на них через ChatGPT SDK.
По сути это убийца n8n и Zapier.
Это интуитивно понятный**визуальный конструктор**, где можно создавать своих ИИ-агентов без единой строчки кода.
Просто перетаскиваешь блоки, подключаешь MCP и ChatKit — и агент сам ищет файлы, анализирует данные и выполняет задачи.
Инструмент уже доступен всем.
OpenAi умеют в дизайн, должно быть удобно.
Можно уже попробовать: https://platform.openai.com/agent-builder
Вышел из беты, получил интеграцию со Slack и собственный SDK.
На демо агент управлял светом и экраном голосом - без кода.
На презентации заявили, что теперь почти весь их код пишется с помощью Codex
Благодаря Codex разработчики OpenAI стали отправлять на 70% больше pull-request’ов в неделю, чем раньше.
Теперь у кодекса появляется интеграция со Slack и SDK, чтобы разработчики могли встраивать его в свои рабочие процессы.
Прямо в эфире Codex написал код для управления камерой, сам собрал интерфейс и **запустил готовое при
$15 за ввод и $120 за вывод за 1M токенов
Gpt-realtime-mini - на 70% дешевле, подходит для мгновенных ответов и потоковых задач
Можно будет генерировать видео прямо из кода
PS: Agent Builder выглядит действительно интересно - интуитивный, гибкий, инструмент с большим потенциало
м.
А вот насколько полезными окажутся приложения внутри ChatGPT, не особо понятно.
OpenAI не боится экспериментировать.
Они развивают ChatGPT как платформу, ищут
новые варианты захвата рынка и пробуют смелые идеи. Это дорогого стоит.
Их интерфейс просто топ: минимализм, аккуратность, почти в духе Apple. UX - на уровне искусства.
У OpenAI уже более 800 млн активных пользователей в неделю и они обрабатывают 6 миллиардов токенов в минуту!
К концу года число пользователей, похоже, вплотную подойдёт к 1 миллиарду.
Но гонка только начинается.
Google явно готовит ответ - Gemini 3 обещает быть топом. Другие игроки тоже не дремлют.
@ai_machinelearning_big_data
#openai #chatgpt #llm #ml #ai
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍658🔥300❤206🎉178👏104😁77🤔52🤩41🤣15👌13🙈13
Google объявил о запуске новой модели EmbeddingGemma, созданной для работы прямо на устройствах - без подключения к интернету. Модель на 308 миллионов параметров, поддерживает более 100 языков и показывает лучшие результаты среди всех открытых моделей размером до 500 млн параметров по тесту MTEB.
После квантования модель кушает менее 200 МБ оперативной памяти, а генерация эмбеддингов занимает всего около 20 миллисекунд на устройствах с EdgeTPU.
Google внедрил технологию Matryoshka Representation Learning, позволяющую использовать разные размеры векторов - от 768 до 128 - в зависимости от задач и ресурсов устройства. Контекстное окно достигает 2000 токенов.
EmbeddingGemma уже интегрируется с популярными инструментами вроде SentenceTransformers, Llama.cpp, LangChain и Transformers.js, а её веса открыты для использования и коммерческой адаптации.
googleblog
Вышла новая open-source модель Kani-TTS-370M, создающая естественное и выразительное звучание при крайне высокой скорости работы. Модель насчитывает 370 миллионов параметров и оптимизирована под потребительские GPU, включая RTX 3060, где она обеспечивает реальное время генерации речи.
Kani-TTS построена на сочетании NanoCodec и LFM2-350M, что обеспечивает компактность и качество, сравнимое с крупными нейронными TTS-системами. Разработчики использовали современные нейросетевые методы синтеза речи, чтобы добиться максимально естественной интонации и чистоты звучания.
Главный акцент сделан на эффективности и универсальности - модель легко разворачивается локально, подходит для встраивания в ассистентов, игровых персонажей и офлайн-озвучку, не требуя облачных вычислений.
HF
По оценкам Adobe Analytics, объем онлайн-продаж в США в праздничный сезон 2025 года достигнет $253,4 млрд, что на 5,3 % больше, чем в прошлом году. AI-трафик при этом вырастет на 520 %, особенно в последние 10 дней перед Днём благодарения.
Почти половина американцев намерены воспользоваться AI-инструментами: 53 % - для поиска товаров, 40 %- для рекомендаций, 36 % — для поиска выгодных предложений, 30 % — чтобы вдохновиться идеями подарков.
Мобильные устройства останутся доминирующей платформой - 56,1 % транзакций пройдут с телефона. Среди драйверов роста - скидки (среднее снижение цен до 28 %), сервисы «купи сейчас, заплати позже» и активность в соцсетях, чья рекламная отдача вырастет на 51 %.
techcrunch
Модель обучается не на 3D-структурах, а чисто на видео и многовидовых данных, что делает её универсальной и масштабируемой.
Kaleido превосходит все предыдущие генеративные модели в задачах с малым числом видов и впервые достигает качества рендеринга уровня InstantNGP в zero-shot режиме. Это шаг к гибкому world modeling, способному как точно реконструировать реальность, так и дорисовывать недостающие детали.
shikun
OpenAI и AMD объявили масштабное сотрудничество: по условиям соглашения OpenAI развернёт 6 гигаватт графических процессоров AMD, начиная с первой волны - 1 гигаватт Instinct MI450 во второй половине 2026 года.
AMD, чтобы выровнять интересы, выдала OpenAI варрант на 160 млн своих акций, который будет реализован по мере достижения этапов развертывания и роста стоимости компании, что может превратить его в ~10 % долю.
Соглашение может принести AMD десятки миллиардов долларов дохода, а также усилить её позиции на рынке чипов для искусственного интеллекта.
Этот шаг позволяет OpenAI диверсифицировать аппаратные поставки и снизить зависимость от одного производителя, а также закладывает мощную основу для масштабных AI-инфраструктур следующих лет.
openai
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
2👍156🔥35❤25🤩13👏7🎉5💘2
This media is not supported in your browser
VIEW IN TELEGRAM
Jules - это ИИ, который умеет писать код, исправлять ошибки и создавать тесты для ваших проектов.
Он подключается к GitHub или другому репозиторию, анализирует кодовую базу и выполняет задачи, которые вы ему задаёте.
С помощью Jules Tools можно запускать и управлять этим агентом напрямую через терминал, без браузера.
Пример, вводите:
jules remote new --session "fix login bug"
После запуска команда создаёт виртуальную машину, клонирует репозиторий, решает задачу и отправляет pull request с готовым исправлением.
Что интересного:
- Командная строка и API для управления агентом
- Асинхронные задачи и параллельное выполнение
- Скрипты и автоматизация (через CI, cron, pipelines)
- Память и адаптация под ваш стиль кода
- Безопасное хранение ключей и токенов
- Интерактивный интерфейс в терминале (TUI) с отображением статуса задач в реальном времени
TUI-режим напоминает веб-панель, но работает прямо в консоли, позволяя быстро запускать, отслеживать и управлять сессиями.
Jules можно интегрировать с Slack или системами сборки - агент сам создаёт и выполняет задачи, пока вы занимаетесь другими делами.
Если агент сталкивается с проблемой, то приостанавливает работу и запрашивает помощь, а не «угадывает» решение.
Обе утилиты - Jules и Gemini CLI - работают на Gemini 2.5 Pro, но Jules ориентирован на короткие и точные задачи, а Gemini CLI - на длительную совместную работу.
Бесплатная версия позволяет запускать 15 задач в день (до 3 одновременно).
Платные тарифы - $19.99 и $124.99 - дают лимиты до 100 и 300 задач.
Google также планирует добавить поддержку GitLab, Bitbucket и локальных проектов без Git.
@ai_machinelearning_big_data
#Google #Jules #AI #CodingAgent #Gemini25Pro #Automation
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥142👍24❤22🎉12👏7😁6🤩5🥰2🤣2🫡2
Media is too big
VIEW IN TELEGRAM
Создание AI-агентов становится одной из самых востребованных профессий на рынке.
Теперь вы можете научиться этом на курсе.
Курс научит вас реализовывать четыре ключевых паттерна дизайна агентов:
- Reflection - как агент анализирует свои ответы и улучшает их
- Tool use - модель выбирает, какие инструменты использовать (поиск, почта, календарь, код и т.д.)
- **Planning**- ИИ планирует и разбивает задачу на подзадачи
- Multi-agent collaboration - взаимодействие нескольких агентов, как сотрудников в команде
Andrew Ng делает акцент на оценке (evals) и анализе ошибок - ключевых навыках для успешной отладки агентных систем.
В курсе есть практика, где можно создадите deep research-агента, который умеет искать, синтезировать и формировать отчёты, применяя все эти паттерны.
- Все уроки и код на Python
- Очень подробно и пошагало объяснены все вунтренности
- В курсе рассматриваются для самые популярные фреймворками для создания ИИ агентнов
Требование для учащихся - базовые знания Python
@ai_machinelearning_big_data
#AI #AgenticAI #AndrewNg #DeepLearningAI #AIagents
Please open Telegram to view this post
VIEW IN TELEGRAM
🤩177👍41❤26👏15💯9🎉6🔥5🙏5😁2🤬1💘1
Media is too big
VIEW IN TELEGRAM
Мишель Деворе (Michel Devoret), главный научный сотрудник команды Google Quantum AI, стал лауреатом Нобелевской премии по физике 2025 года.
Он разделил награду с Джоном Мартинесом (бывшим сотрудником Google Quantum AI) и Джоном Кларком из Калифорнийского университета в Беркли.
Премия присуждена за исследования макроскопических квантовых эффектов, которые стали фундаментом для создания сверхпроводящих кубитов - ключевой технологии в квантовых компьютерах.
Для Google это исторический момент: теперь в числе сотрудников и выпускников компании уже пять лауреатов Нобелевской премии, включая Демиса Хассабиса и Джеффри Хинтона, отмеченных в 2024 году.
По данным *The Information*, Oracle понесла убытки около $100 млн за прошлый квартал из-за аренды чипов Blackwell.
Маржа серверного проката составила всего около 16%.
Бизнес по аренде GPU оказывается сложным:
скорее всего, дело не в падении спроса, а в сильном давлении на маржу - клиенты активно торгуются и сбивают цены.
theinformation
Модель содержит 8.3 млрд параметров, из которых активно только 1.5 млрд на токен, что даёт качество уровня 3–4B плотных моделей, но при этом она быстрее Qwen3-1.7B.
Модель показала себя отлично на 16 банчмарках:
она обгоняет LFM2-2.6B и модели аналогичного размера, особенно в задачах математики, кода и творческого письма.
huggingface
Deloitte объявила о крупнейшем корпоративном внедрении AI в истории Anthropic - Claude теперь станет рабочим инструментом для 470 000 сотрудников по всему миру.
Компания создаёт отраслевые версии Claude для бухгалтеров и разработчиков, а также откроет Claude Center of Excellence и сертифицирует 15 000 специалистов. В фокусе - прозрачность и соответствие нормам, с опорой на фреймворк Trustworthy AI.
Любопытно, что накануне Deloitte признала, что использовала ИИ в официальном отчёте правительства Австралии, где оказались поддельные цитаты и ссылки, и согласилась вернуть часть контракта на $440 000.
TechCrunch
Пациент Nick Wray стал первым, кто с помощью Neuralink PRIME BCI смог управлять роботизированной рукой напрямую с помощью мозга. Он рассказал, что впервые за многие годы смог сам надеть шляпу, разогреть еду и поесть без помощи.
В проекте участвует и xAI Илонa Маска: система Grok помогает Neuralink усиливать нейроинтерфейс — от преобразования мыслей в текст и ускоренной коммуникации до синтезированного голоса и долгосрочной цели — когнитивного соединения человека и ИИ на бинарном уровне.
Многие задаются вопросом: станет ли Grok 5 шагом к слиянию человеческого сознания и искусственного интеллекта?
Это одно из самых вдохновляющих достижений в истории нейротехнологий — шаг к возвращению физической независимости людям и, возможно, к новой эре взаимодействия человека и ИИ.
Видео
Компания ElevenLabs представила Agent Workflows - инструмент, который позволяет визуально проектировать логику диалогов и взаимодействие агентов на платформе Agents.
Теперь вместо громоздкого единого агента можно создавать Subagents - специализированных подзадачных агентов с собственными промптами, базами знаний и инструментами.
С помощью Workflows можно задавать, когда агент передаёт управление подагенту, а когда подключает человеческого оператора. Это делает систему более гибкой и безопасной.
Кроме того, Workflows обеспечивают надёжное подключение к корпоративным системам, управление бизнес-логикой и умную маршрутизацию диалогов, что помогает снизить затраты, задержки и повысить точность ответов.
elevenlabs
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👏150❤29👍28🎉15🤔6🤩6🙏2🏆2💘1
Модель на 1 трлн, из них ≈ 50 млрд активны на токен (MoE-архитектура).
Она обучена на 20 трлн+ токенов, специально отобранных для задач логического мышления и рассуждений. Контекст: 128 000 токенов.
Построена на базе Evo-CoT (Evolutionary Chain of Thought) и Linguistics-Unit RL - нового метода обучения для масштабируемых рассуждений. При помощи Evo-CoT модель постепенно улучшает баланс между точностью рассуждений и вычислительной эффективностью. То есть с каждым шагом она пытается делать рассуждения «глубже», но не слишком дорого по ресурсам.
Моделька демонстрирует сильные результаты в задачах кода, математики, логики и фронтенд-генерации.
В архитектуре задействованы Mixture-of-Experts (1/32 активация), MTP слои и маршрутизация экспертов.
Ling-1T показывает, что огромные модели можно сделать не только мощными, но и экономичными.
https://huggingface.co/inclusionAI/Ling-1T
@ai_machinelearning_big_data
#Ling1T #AI #ML #OpenSource #Reasoning #TrillionScale #FP8
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍680❤159🤔148🔥146💯98👏97😁69🥰65😐16😢12🤩9
Google готовит полный редизайн Gemini AI: вместо обычного чата появится вертикальная лента, где можно листать визуальные ответы, видео и карточки - как в TikTok.
Аналитики считают, что новый формат повысит вовлечённость пользователей и откроет новые каналы дохода - от подписок до встроенной рекламы.
Bank of America называет обновление «ключевым катализатором роста» и прогнозирует дальнейший рост акций Alphabet.
Gemini уже становится центральным продуктом Google в ИИ, а после мультимодальных функций и визуального интерфейса может догнать или даже обойти ChatGPT.
marketwatch
Финансирование разделено на $7,5 млрд в акциях и до $12,5 млрд долга, оформленных через специальную структуру (SPV), которая будет использоваться для закупки чипов Nvidia.
Сама Nvidia участвует в раунде, инвестируя до $2 млрд в долевую часть сделки - по сути, поставщик чипов финансирует покупателя своих же процессоров.
xAI укрепляет позиции в гонке за вычислительные мощности, а Nvidia ещё глубже встраивается в экономику будущего ИИ.
reuters
Вместо этого они восстановили работу гематоэнцефалического барьера - защитного фильтра между мозгом и кровеносной системой, который обычно разрушается при нейродегенеративных заболеваниях.
Эти наночастицы представляют собой так называемые «супрамолекулярные лекарства», они не просто доставляют действующее вещество, а сами выполняют терапевтическую функцию. Учёные запрограммировали их так, чтобы они имитировали белок LRP1, отвечающий за выведение токсичных амилоидных бета-пептидов (Aβ) из мозга. Когда наночастицы связываются с этим белком, запускается процесс самоочищения и восстановления барьера.
Эксперименты показали, что уже через один час после введения уровень амилоида в мозге животных снизился на 50–60 %. После трёх доз у 12-месячных мышей (эквивалентно людям около 60 лет) к 18-месячному возрасту (примерно 90 лет у человека) полностью восстановились поведенческие функции и животные снова вели себя как молодые.
Пока метод протестирован только на животных, и для применения на людях потребуются дополнительные исследования безопасности и эффективности.
interesting
Новая модель Sora 2 от OpenAI столкнулась с ошибками в работе **guardrails - механизмов, отвечающих за блокировку нежелательного контента.
Модель в некоторых случаях пропускает запрещённые или неуместные материалы, а также ошибочно помечает безопасные запросы как нарушения. Это вызывает вопросы к её готовности для широкого коммерческого использования.
OpenAI уже расследует проблему и уточняет, что сбой связан с «непредвиденными взаимодействиями между мультимодальными фильтрами».
Контроль безопасности для генеративных видео-моделей - куда сложнее, чем для текста. И Sora 2 сейчас становится главным испытанием этой технологии.
404
💰 OpenAI, Nvidia и AMD заключили сделки почти на $1 триллион - создавая замкнутый цикл инвестиций
OpenAI выстраивает сеть сделок с ключевыми игроками индустрии - Nvidia, AMD и Oracle - общим объёмом свыше $1 трлн.
Что происходит:
- Nvidia инвестирует $100 млрд в OpenAI и строит 10 ГВт серверов для её инфраструктуры.
- В ответ OpenAI закупает у AMD 6 ГВт GPU и получает право купить до 10 % акций AMD по символической цене.
- Также OpenAI подписала контракт с Oracle на $300 млрд вычислительных мощностей в рамках проекта Stargate, который развернёт ещё 7 ГВт дата-центров в США.
- Посредник CoreWeave удерживает центр системы: контракты с OpenAI на $22,4 млрд и соглашение с Nvidia на $6,3 млрд облачных мощностей до 2032 года.
Компании фактически создают «замкнутую экосистему», где деньги и поставки ходят по кругу - Nvidia финансирует OpenAI, OpenAI закупает у AMD и Oracle, а те - у Nvidia.
bloomberg
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤45👍18🔥9🗿7😁2🤔2💘2💋1
AI21 представила Jamba 3B - компактную модель, которая обошла Qwen 3 4B и IBM Granite 4 Micro по качеству рассуждений.
Более высокая эффективность, в сравнении с AI21 - 2–5× улучшение в производительности по сравнению с конкурентами за счёт меньшего KV-кэша и гибридной архитектуры.
Секрет в архитектуре:
🔹 сочетание Transformer attention и Mamba state-space слоёв.
🔹 Mamba-часть эффективно обрабатывает длинные последовательности без тяжёлых attention-кэшей,
🔹 а Transformer-слои сохраняют способность к сложным рассуждениям.
Результат, модель кушает меньше памяти, выдает высокую скорость и плавно работает даже на ноутбуках, GPU и мобильных устройствах.
📏 Контекст: до 256K токенов.
⚡ Скорость: около 40 токенов/сек даже на длинных контекстах, тогда как другие модели резко замедляются.
На графике “интеллект против скорости” Jamba 3B опережает Gemma 3 4B, Llama 3.2 3B и Granite 4.0 Micro, демонстрируя высший интеллект и более быструю генерацию.
🟢 Подробнее: huggingface.co/ai21labs/AI21-Jamba-Reasoning-3B
@ai_machinelearning_big_data
#AI #LLM #Jamba3B #AI21 #Mamba #Transformer #DeepLearning
Более высокая эффективность, в сравнении с AI21 - 2–5× улучшение в производительности по сравнению с конкурентами за счёт меньшего KV-кэша и гибридной архитектуры.
Секрет в архитектуре:
🔹 сочетание Transformer attention и Mamba state-space слоёв.
🔹 Mamba-часть эффективно обрабатывает длинные последовательности без тяжёлых attention-кэшей,
🔹 а Transformer-слои сохраняют способность к сложным рассуждениям.
Результат, модель кушает меньше памяти, выдает высокую скорость и плавно работает даже на ноутбуках, GPU и мобильных устройствах.
📏 Контекст: до 256K токенов.
⚡ Скорость: около 40 токенов/сек даже на длинных контекстах, тогда как другие модели резко замедляются.
На графике “интеллект против скорости” Jamba 3B опережает Gemma 3 4B, Llama 3.2 3B и Granite 4.0 Micro, демонстрируя высший интеллект и более быструю генерацию.
@ai_machinelearning_big_data
#AI #LLM #Jamba3B #AI21 #Mamba #Transformer #DeepLearning
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤40🔥20👍11🤔4💘2
Media is too big
VIEW IN TELEGRAM
«Единственное, о чём я жалею, что не дал ему больше денег.
Когда речь идёт о проектах, в которых участвует Илон, ты хочешь быть частью этого. Он дал нам шанс инвестировать в xAI и это инвестиция в действительно великое будущее. Это не просто партнёрское финансирование, это вера в идею».
Крупнейшие компании Amazon, Microsoft и Google - управляют бизнесом на несколько триллионов долларов и тратят около сотни миллиадров на инфраструктуру дата-центров.
Но сейчас происходит тектонический сдвиг:
💡 переход от CPU-систем к генеративным AI-платформам на GPU, и этот переход только начинается.
Nvidia уже продала оборудования на сотни миллиардов долларов для этой новой эры,
но на фоне многотриллионного рынка AI-инфраструктуры и это тольео начало пути.
Мир вступает в долгосрочный цикл экспансии инвестиций в ИИ,
Nvidia - в самом центре этого колоссального рынка. 🚀
@ai_machinelearning_big_data
#Nvidia #xAI #ElonMusk #JensenHuang #AI #инвестиции #технологии #GPU
Please open Telegram to view this post
VIEW IN TELEGRAM
👍75🔥19❤18😁6🥱5💘2🐳1
Media is too big
VIEW IN TELEGRAM
Модель GPT-5 Pro заняла первое место среди всех проверенных frontier-LLM на закрытом бенчмарке ARC-AGI Semi-Private. Этот тест оценивает способность моделей к абстрактному рассуждению и решению сложных задач.
Интересно, что GPT-5 Pro всё ещё уступает результатам старого o3-preview, который OpenAI тестировал ещё в декабре прошлого года. Однако тот экспериментальный вариант был почти в 50 раз дороже в вычислительных затратах и никогда не был публично выпущен.
Версия o3-preview (high) достигала впечатляющих 87,5 % точности на ARC-AGI-1, но потребляла 172 раза ресурсов, чем версия (low). Из-за этого она не попала в официальный лидерборд - по правилам, тесты с compute-стоимостью выше $10 000 не публикуются.
GPT-5 Pro является самой мощной из доступных и подтверждённых моделей на Semi-Private ARC-AGI.
В список вошли достижения в самых разных областях: ИИ робототехника, медицина, экология, образование, энергетика и дизайн. Среди ключевых технологий - Claude Sonnet 4 от Anthropic, новая версия ИИ-модели, которая продемонстрировала более точные и безопасные ответы; NVIDIA DGX Spark - «настольный» AI-суперкомпьютер, делающий высокопроизводительные вычисления доступнее; UiPath Agentic Automation, объединяющая работу AI-агентов; и XReal One - компактные AR-очки, приближающие смешанную реальность к массовому использованию.
TIME отметили разработки в области биотехнологий, биопечати тканей, устойчивых источников энергии и переработки отходов. Эти изобретения демонстрируют, как технологии становятся не просто инструментами, а основой будущего образа жизни.
time
Google Cloud опубликовал обновлённый список из корпоративных примеров применения генеративного ИИ, что в 10 раз больше, чем годом ранее. Это показывает, что AI уже массово используется в продакшене по всему миру.
В банках и ритейле Commerzbank ИИ обрабатывает 2 млн клиентских чатов с 70% успешных решений, Best Buy ускоряет анализ отзывов, а Mercedes внедрил голосового ассистента на базе Gemini.
Внутри компаний ИИ автоматизирует рутину: Toyota экономит более 10 000 часов в год, Manipal Hospitals сократил передачу смен с 90 до 20 минут, Equifax - 97% сотрудников хотят сохранить AI-лицензии.
Wayfair ускорил настройку окружений на 55%, CME сэкономил 10,5 часов в месяц, а BMW и UPS используют цифровых двойников для моделирования логистики и производств.
Подробнее
Министр экономики Тайваня заявил, что TSMC сохранит свои самые передовые технологии и основное производство на острове, несмотря на предложение США сделать «50 на 50».
Компания вкладывает $165 млрд в шесть фабрик в США, но строит десять на Тайване и планирует новые - там останутся ведущие технологические узлы.
По словам министра, зарубежные заводы допустимы только при реальных заказах, прибыли и отсутствии рисков для безопасности.
Идея «50-50» возникла из-за стремления США увеличить долю внутренних чипов после кризиса поставок 2020–2021 годов.
Аналитики считают, что перенос производства в США слишком дорог и займёт годы, поэтому Вашингтон делает ставку на «friendshoring» - распределённые цепочки поставок между союзниками.
times
Microsoft представила новую модель UserLM-8B, созданную для симуляции поведения пользователя в диалоге. В отличие от обычных LLM, эта модель генерирует реплики от лица человека, включая уточнения, эмоции и ошибки, как в реальном общении.
Модель построена на базе Llama3.1 8B и дообучена на корпусе WildChat-1M, где она анализировала сотни тысяч реальных и синтетических диалогов. Такой подход позволяет создавать реалистичные сценарии общения для тестирования чат-ботов, обучения ассистентов и генерации синтетических данных.
HF
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤46👏16👍7🔥7
В эпоху, когда сами нейросети уже перестали удивлять, конкуренция смещается в сторону платформ, сервисов и инструментов, которые помогают работать с ИИ на практике. Всё чаще ценность определяется не параметрами модели, а тулингом вокруг нее и тем, как нейросеть встроена в продукты и решает конкретные бизнес-задачи.
Подробнее — в свежем интервью: https://mltimes.ai/rukovoditel-platformy-ai-studio-v-yandex-b2b-tech-artur-samigullin-o-konkurenczii-s-inostrannymi-modelyami-i-kak-yandeks-prodaet-svoi-i-opensorsnye-nejroseti/
@ai_machinelearning_big_data
#news #ai #ml
Подробнее — в свежем интервью: https://mltimes.ai/rukovoditel-platformy-ai-studio-v-yandex-b2b-tech-artur-samigullin-o-konkurenczii-s-inostrannymi-modelyami-i-kak-yandeks-prodaet-svoi-i-opensorsnye-nejroseti/
@ai_machinelearning_big_data
#news #ai #ml
❤31👍17🔥8😁2
This media is not supported in your browser
VIEW IN TELEGRAM
Она была преобразована из предварительно обученной авторегрессионной модели (Qwen3-30B-A3B) и затем дополнительно обучена на 500 миллиардах токенов, чтобы полностью поменять поведениие диффузионной модели.
Обычные модели (AR, автогрессионные) пишут текст слово за словом, а RND1 создаёт всё предложение сразу и потом пошагово уточняет его, как будто “проявляет” текст из шума.
Это - Diffusion Language Model (DLM), аналог диффузионных моделей, которые рисуют картинки, только здесь она “рисует” слова.
🔄 Как её сделали
Команда Radical Numerics придумала, как превратить готовую модель в диффузионную без обучения с нуля.
Они просто поменяли тип внимания и дообучили модель на новой задаче.
Этот метод называется AR-to-Diffusion Conversion (A2D) - то есть конверсия из автогрессионной модели в диффузионную.
Как это происходит:
1. Берут сильную GPT-подобную модель.
2. Меняют механизм внимания — теперь модель видит весь контекст сразу.
3. Продолжают обучение по диффузионной задаче.
4. Используют разные скорости обучения для разных частей сети, чтобы модель не забыла старое, но научилась новому способу мышления.
⚙️ Что под капотом
▪ Mixture-of-Experts (MoE) - у модели 30 млрд параметров, но реально работают только 3 млрд за раз. Это делает её мощной, но экономной.
▪ Непрерывное дообучение - старые знания не стираются, а “встраиваются” в новый режим.
▪ Огромные батчи - модель учится на больших партиях данных, чтобы стабилизировать обучение, ведь она не обрабатывает все токены сразу.
- Параллельная генерация - текст создаётся быстрее, без пошаговой задержки.
- Меньше затрат - активных параметров всего 3 млрд, при этом качество как у больших GPT.
- Новая архитектура - открывает дорогу гибридным моделям, сочетающим плюсы AR и DLM.
- Полностью открытый код и веса - можно исследовать, изменять, запускать самому.
- Первый серьёзный шаг к самосовершенствующемуся ИИ- модель может не только обучаться, но и помогать в проектировании следующей версии.
Это реально интересный метод, RND1 показывает, что ИИ можно не просто обучать, а перестраивать - менять его саму логику мышления без начала “с нуля”.
Похоже, это может стать фундаментом для систем Recursive Self-Improvement (RSI), когда ИИ способен создавать и улучшать самого себя.
@ai_machinelearning_big_data
#RND1 #RadicalNumerics #AI #DLM #DiffusionModel #MoE #OpenSource
Please open Telegram to view this post
VIEW IN TELEGRAM
👍56🔥25❤20
Это подборка интерактивных ноутбуков, демонстрирующих возможности Qwen3-VL - как при локальном запуске, так и через API.
Внутри - десятки реальных примеров с разборами:
▪ Работа с изображениями и рассуждение по ним
▪ Агент для взаимодействия с интерфейсами (Computer-Use Agent)
▪ Мультимодальное программирование
▪ Распознавание объектов и сцен (Omni Recognition)
▪ Продвинутое извлечение данных из документов
▪ Точное определение объектов на изображении
▪ OCR и извлечение ключевой информации
▪ 3D-анализ и привязка объектов
▪ Понимание длинных документов
▪ Пространственное рассуждение
▪ Мобильный агент
▪ Анализ и понимание видео
@ai_machinelearning_big_data
#Qwen #Qwen3VL #AI #VisionLanguage #Multimodal #LLM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤55🔥18👍16