364K subscribers
4.25K photos
797 videos
17 files
4.75K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
🧠 Thinking Machines представила - On-Policy Distillation

Исследователи из Thinking Machines Lab предложили метод, который может изменить то, как обучаются языковые модели. Он называется on-policy distillation - и учит ИИ не просто копировать, а думать и анализировать свои ошибки.

Обычно «дистилляция» работает просто: большая модель-учитель показывает ответы, а маленькая модель-ученик запоминает их. Это похоже на заучивание по шпаргалке - быстро, но без понимания сути.

В новом подходе всё иначе. Ученик сам решает задачи, а учитель оценивает и направляет - объясняет, где логика сбоит и как улучшить рассуждение. Таким образом, меньшая модель перенимает не только знания, но и способ мышления более крупной модели.

Что показали результаты

Эксперименты проводились на задачах математического и логического рассуждения, где важно не просто выдать правильный ответ, а выстроить цепочку шагов.

Результаты впечатляют:

Модель-ученик после обучения с on-policy distillation показала почти ту же точность, что и гораздо более крупная модель-учитель.

При этом вычислительные затраты снизились в несколько раз, делая модель заметно эффективнее и дешевле.

Кроме того, ученик стал лучше понимать собственные ошибки, что повысило устойчивость и надёжность при решении новых, незнакомых задач.

Почему это важно
On-policy distillation решает ключевую проблему традиционных методов - отсутствие адаптивности.
Модель теперь учится на собственных шагах, как человек, — экспериментирует, ошибается, корректирует поведение и растёт.

Уникальность подхода - в балансе между качеством RL и экономичностью KD. Это реальная схема, где маленькая модель учится “в поле” (реагируя на собственные действия), но без дорогих RL-запусков и сложных reward-моделей.

Это не новый метод обучения, а новая инженерная формула, которая позволяет дешевле «учить» компактные модели, ведущие себя как большие.

Это открывает путь к созданию компактных LLM нового поколения, которые рассуждают почти как топовые модели, но стоят в разы дешевле.

Такие модели можно запускать на edge-устройствах, в автономных агентах и локальных сервисах, где важны скорость, приватность и энергоэффективность.

🟠 Подробнее: thinkingmachines.ai/blog/on-policy-distillation/

@ai_machinelearning_big_data


#ThinkingMachines #llm #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥9139👍19👏2😁1🤗1