AI21 Labs опубликовала в открытом доступе семейство моделей Jamba 1.5. Модели позиционированы для использования в бизнесе для задач анализа документов, рабочих процессов RAG, поддержки клиентов и обладают возможностями вызова функций, структурированного вывода (JSON) и генерации текстовых данных.
Семейство демонстрирует хорошую управляемость в длительном контексте, скорость и качество. Это первый кейс успешного масштабирования не трансформерной модели до уровня качества топовых открытых моделей.
Архитектура Jamba состоит из гибридного сочетания Transformers и Mamba, что позволило создать модели, которые требуют меньший объем VRAM, чем трансформерные аналоги и могут обрабатывать контексты длиной до 140 тысяч токенов на одном GPU в квантованной версии.
Чтобы сделать модели удобными в использовании, была разработана новая техника квантования ExpertsInt8. Она квантует только веса, которые являются частью слоев MoE, и сохраняет их в формате INT8.
ExpertsInt8 быстрее других методов квантования, не требует калибровки и дает возможность использования BF16 для хранения больших активаций и позволяет загружать Large модель на одном узле из 8 GPU.
Jamba 1.5 Large:
Jamba 1.5 Mini:
Запуск моделей возможен на платформах AI21 Studio, Google Cloud, Azure, Hugging Face, NVIDIA NIM.
Протестировать возможности обеих моделей можно онлайн в сервисе AI21 Studio .
Доступен вход с Gmail и Github, на бесплатный тестовый период дается 10$ на три месяца при тарификации:
@ai_machinelearning_big_data
#AI #Jamba #LLM #ML #SSM
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍29❤6🔥3🎉3
Новая архитектура Mamba-3 делает модели быстрее, стабильнее и эффективнее при работе с длинными контекстами.
Главная идея - не в слоях внимания, а в state-space моделях, где модель хранит и обновляет внутреннее состояние во времени.
📘 Краткие эускурс:
- Mamba-1 ввела непрерывную динамику и выборочное обновление памяти - помнила эффективно без высокой цены attention.
- Mamba-2 показала, что обновления состояния и attention - это две стороны одной математики, что ускорило вычисления на GPU.
- Mamba-3 довела концепцию до зрелости: теперь внутренняя память развивается плавнее и устойчивее за счёт перехода от простого шага Эйлера к трапецеидальному интегрированию.
Вместо простого шага Эйлера, как в Mamba-2, Mamba-3 аппроксимирует интеграл обновления состояния не только по правому концу интервала, но усреднением между началом и концом, с коэффициентом λ, зависящим от данных. Это даёт более точное приближение (второго порядка) и делает динамику состояния более выразительной.
🧠 Что изменилось под капотом:
- Память стала «ритмичной»: теперь модель может хранить повторяющиеся и периодические паттерны (например, структуры языка или музыки).
- Новый multi-input-multi-output дизайн позволяет обрабатывать несколько потоков параллельно — идеально для современных GPU.
⚙️ Что это даёт на практике:
- Эффективная работа с длинными последовательностями: документы, геномы, временные ряды.
- Линейное время выполнения и стабильная задержка делают её идеальной для реального времени: чат-ботов, перевода, речи.
- Энергоэффективность и масштабируемость открывают путь к on-device AI, где большие модели работают локально, без облака.
Mamba-3 - это не просто ускоренная альтернатива Transformers.
Это новая архитектура, которая объединяет глубокое понимание контекста, скорость и устойчивость, от серверных систем до умных устройств.
@ai_machinelearning_big_data
#ssm #mamba3 #llm,#architecture #ai
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤56🔥28👍15🤔3🗿3😁1