366K subscribers
4.34K photos
820 videos
17 files
4.82K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
Media is too big
VIEW IN TELEGRAM
✔️ IBM совершила прорыв в квантовых вычислениях: на обычных FPGA-чипах

Всего через два дня после новости от Google - ещё один крупный квантовый прорыв.

IBM заявила, что один из её ключевых алгоритмов квантовой коррекции ошибок теперь способен работать в реальном времени на FPGA-чипах AMD, без использования экзотического оборудования.

Это делает квантовые вычисления быстрее, дешевле и ближе к практическому применению, чем ожидалось.

Алгоритм, который отслеживает и исправляет ошибки кубитов «на лету»,показал производительность в 10 раз выше необходимой, что стало важным шагом к созданию квантового компьютера Starling, запланированного на 2029 год.
Теперь IBM утверждает, что проект идёт на год впереди графика.

Исследовательская статья выйдет в понедельник.
Темп развития квантовых технологий заметно ускоряется.
reuters

✔️ Microsoft представила AI-браузер Edge - ответ на OpenAI Atlas

Через два дня после запуска OpenAI Atlas Microsoft представили обновлённый браузер Edge с новым режимом Copilot Mode. Это полноценный AI-бразуер, который понимает контекст вкладок, выполняет действия и способен продолжать проекты, используя историю пользователя.

Функция Actions позволяет голосом или через чат открывать страницы, находить нужную информацию, отписываться от рассылок и даже бронировать рестораны. Система Journeys группирует прошлую активность по темам и помогает вернуться к незавершённым задачам, предлагая логичные следующие шаги. Включение Page Context даёт Copilot доступ к истории для более точных и персонализированных ответов, однако это остаётся опциональной функцией, которую можно отключить в любой момент.

Edge также получил встроенный AI-защитник от фейковых всплывающих окон, менеджер паролей с проверкой на утечки.

Браузер уже доступен в странах, где работает Copilot, на Windows и macOS.
Microsoft

✔️ Google добавили reasoning в Google Earth

Google представила фреймворк Geospatial Reasoning на базе Gemini, который объединяет предиктивные модели и данные в единую систему анализа Земли.
Теперь ИИ способен рассуждать о реальных процессах, например, предсказывать землетрясения, оценивать риски и предлагать план эвакуации.

Система уже применяется в ВОЗ (WHO AFRO) для прогнозов вспышек холеры и у McGill & Partners для расчёта ущерба после ураганов.

Google превращает Google Earth из карты в разумный аналитический инструмент планеты.
google


✔️ Исследователи создали систему DiscoRL (Discovered Reinforcement Learning), где модель сама открыла правило обучения с подкреплением, не опираясь на человеческие алгоритмы вроде Q-Learning или PPO.

Мета-обучатель наблюдал за множеством агентов в разных средах и вывел универсальное правило обновления, которое улучшает поведение моделей без ручной настройки.
В итоге DiscoRL победил лучшие алгоритмы на Atari 57 и успешно перенёс этот навык на новые задачи.
nature

✔️ Hugging Face выпустила OpenEnv: универсальную среду для создания AI-агентов

Hugging Face открыла OpenEnv -платформуа где можно собирать, обучать и масштабировать агентов под ваши задачи.
Внутри уже есть всё: инструменты, плагины, API и поддержка обучения с подкреплением - без сторонних библиотек.

OpenEnv позволяет создавать системы, где агенты взаимодействуют, распределяют задачи и выполняют их самостоятельно.
Платформа полностью открыта и готова к использованию без ограничений.
HF

✔️ Qwen3-Max вышла в лидеры среди AI-трейдеров

На криптобенчмарке AlphaArena модели ИИ торгуют по $10 000 на площадке Hyperliquid, чтобы проверить качество торговых стратегий.
После старта, где лидировала DeepSeek V3.1, а GPT-5 показывала убыток около −39 %, Qwen3-Max обошла всех и заняла первое место.

Все участники - Qwen3-Max, DeepSeek V3.1, Claude 4.5 Sonnet, Gemini 2.5 Pro, Grok 4 и GPT-5 — торгуют в одинаковых условиях без приватных данных, что делает тест прозрачным.
На Polymarket оценивают шансы Qwen3-Max удержать лидерство в 45 %.

Организаторы планируют расширить эксперимент на акции и другие активы и запустить инвестплатформу для AI-агентов.

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
183👍63🔥17🌚5👀3🤗3
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ LongCat-Video 13.6И - мощная open-source модель для генерации видео.

Модель поддерживает:

- Текст в видео (Text-to-Video)
- Оживлять картинку (Image-to-Video)
- Продолжать существующее видео (Video Continuation)

Всё в одном фреймворке, без переключения между разными моделями.

🎬 Главное преимущество модели - способность генерировать длинные видео (минуты) без потери качества и цветового дрейфа, что до сих пор остаётся слабым местом большинства аналогов.

Еще из интересного, модель позволяет создавать видео в разрешении 720p при 30 кадрах/с.

🏆 LongCat-Video конкурирует с лучшими open-source решениями и даже некоторыми коммерческими моделями, особенно в согласованности текста и изображения.

Самое приятное - полный open-source под лицензией MIT, можно использовать как в исследованиях, так и в коммерческих проектах.

GitHub: https://github.com/meituan-longcat/LongCat-Video
Hugging Face: https://huggingface.co/meituan-longcat/LongCat-Video
Сайт проекта: https://meituan-longcat.github.io/LongCat-Video/

@ai_machinelearning_big_data


#LongCatVideo #TextToVideo #ImageToVideo #VideoContinuation #OpenSource #AI #GenerativeAI #VideoGeneration
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7135🔥16😇4❤‍🔥2🤗2💔1
✔️ Подборка полезных бесплатных курсов и гайдов на выходные.

🖥 Microsoft представила свежий цикл лекций по Python и и ИИ.

Содержание: Курс включает 9 лекций, дополненных видео, подробными презентациями и примерами кода. Цикла - обучение разработке ИИ-агентов доступен написан понятно, даже для новичков в программирование.
Темы: В лекциях рассматриваются такие темы, такие как RAG (Retrieval-Augmented Generation), эмбеддинги, агенты и протокол MCP.
👉 Курс

💡Гарвардский курс по машинному обучению

Культовый трек CS 249 превратили в интерактивный учебник - и это, пожалуй, один из лучших стартов для инженеров, которые хотят делать реальные ML-системы, а не просто играться с моделями.

• Вся база по ML: объясняют фундамент с нуля, нужно только знание Python
• Проектирование систем и инженерия данных
• Подготовка датасетов, MLOps и мониторинг
• Развёртывание ИИ в IoT и продакшене

Это практический курс: не о формулах, а о том, как внедрять ML так, чтобы он приносил бизнесу прибыль.
Если хочешь понять, как модели живут в проде - идеальный вариант для старта.
👉Курс

🖥 Создай своего Bash-агента с NVIDIA Nemotron за 1 час

NVIDIA показала, как собрать AI-агента, который понимает твои запросы на естественном языке и сам выполняет команды Bash.
В основе модель Nemotron Nano 9B v2: компактная, быстрая, идеально подходит для локального эксперимента.

Агент умеет:
- распознавать команды на естественном языке («создай папку», «покажи файлы»),
- превращать эти команды в рабочие Bash-срипты
- спрашивать подтверждение перед выполнением.

Весь код занимает ~200 строк Python, работает через FastAPI и LangGraph.
Можно расширить под DevOps, Git-операции, анализ логов или управление сервером.
👉Гайд

⚡️ Kaggle Learn: интерактивные мини-курсы по Python, Data Science и машинному обучению.
Полностью бесплатно и максимально практично.


Что внутри:
• Python, Pandas, визуализация
• Основы машинного обучения и фичеринжиниринг
• Подготовка данных и работа с моделями

Практика без лишней теории учишься и сразу применяешь.
👉Курс

🖥 Гайд по шардингу баз данных от PlanetScale

Вы узнаете, как масштабировать базы данных через шардинг - разбиение данных по серверам для роста производительности и отказоустойчивости.

Главное:
• Шардинг нужен, когда одна база больше не справляется с нагрузкой.
• Есть два популярных подхода — по диапазону (range) и по хешу (hash).
• Важно выбрать стабильный ключ (например, user_id) и избегать кросс-шардовых запросов.
• Прокси-слой немного увеличивает задержку, но даёт масштабируемость.

Отличный материал, если хочешь понять, как строят системы уровня YouTube. А здесь много базы по SQL
Читать

🧠 60 готовых проектов по генеративному ИИ

Список из 60 проектов на GitHub с открытым кодом по генеративному ИИ 0от текстовых моделей до аудио и видео.

Каждый проект - с описанием и ссылкой на репозиторий. Можно выбрать идею, запустить локально и собрать своё AI-портфолио.
👉 Github

👉 Еще больше полезного.

@ai_machinelearning_big_data

#AI #MachineLearning #DataScience #ML #ИИ #freecourses
Please open Telegram to view this post
VIEW IN TELEGRAM
2👍10146🔥18🗿5💋1
Media is too big
VIEW IN TELEGRAM
✔️ Роль Wikipedia в интернете изменилась.

Википедия стремительно теряет аудиторию, но получает всё больше автоматических обращений со стороны ИИ-систем, которые берут оттуда данные напрямую, не отправляя пользователей на страницы.

Wikipedia становится не столько источником контента, сколько платформой для проверки фактов. Уже сегодня она применяет собственные ИИ-инструменты, которые автоматически отслеживают подозрительные правки, например, попытки вставить ложную информацию, оскорбления или спам. Система не публикует изменения сама, но помогает редакторам быстрее их находить и проверять.

Поскольку проект не может продавать данные напрямую, как Reddit, Wikipedia запустила платные подписки на мгновенный доступ к обновлениям, и среди клиентов уже есть Google.
Ежегодное содержание платформы обходится примерно в 178 миллионов долларов, большая часть которых уходит на серверы и инфраструктуру.
ft

✔️ Китайский стартап Noetix Robotics представил своего первого потребительского робота под названием Bumi, ориентированный на работу по дому и образовательное применение.

Робот стоит всего 9 988 юаней (~1 402 доллара США), его рост - 94 см, вес - 12 кг.

Робот снабжён 21 степенью свободы, способен ходить на двух ногах и выполнять гибкие танцевальные движения. Он построен из лёгких композитных материалов, поднимает голосовые команды взаимодействие, а так же у него есть своя среда разработки, для которой можно писать код .
scmp

✔️NVIDIA представила Audio Flamingo 3: новую мультимодальную модель, которая умеет понимать и анализировать звук, речь и музыку.

Модель сочетает несколько технологий: аудиокодер AF-Whisper, адаптер, языковую модель Qwen 2.5 7B и модуль генерации речи. Такой стек позволяет ей работать с длинными звуковыми записями (до 10 минут), распознавать речь, понимать контекст и вести многотуровые голосовые диалоги.

Audio Flamingo 3 обучена на множестве аудио-датасетов и уже показывает высокие результаты на 20 бенчмарках по звуковому пониманию и рассуждению.
Модель распространяется для исследовательских целей и интегрирована в экосистему NVIDIA с поддержкой PyTorch и Hugging Face Transformers.
HF

✔️ Kuaishou Technology представила новую генеративную модель SVG - это Latent Diffusion без классического блока VAE.

Вместо вариационного автоэнкодера модель использует самообучающиеся представления, которые позволяют модели работать быстрее и точнее.

Результат впечатляющий: обучение идёт в 62 раза быстрее, а инференс - в 35 раз. При этом качество изображений не только не падает, но и становится лучше. Отказ от VAE устранил искажения при переходе в латентное пространство и повысил стабильность при генерации картинок высокого разрешения.

SVG можно рассматривать как новую архитектуру для диффузионных моделей, более простую, быструю и энергоэффективную альтернативу привычным решениям с VAE.
Hf

✔️Акции энергетических компаний, выросшие на ожиданиях ИИ-бума, резко упали - сектор потерял около 12% за пять торговых сессий к середине октября, что стало самым сильным падением с февраля.

Сильнее всего пострадали Oklo (минус 30%) и Vistra (минус 12%). Поводом стали осторожные сигналы с рынка: исследования показали, что некоторые модели ИИ могут работать с меньшими вычислительными затратами, GE Vernova намекнула на охлаждение инвестиций, а инвесторы вновь обратили внимание на отсутствие выручки у Oklo.

После бурного роста в начале октября: Oklo выросла почти в восемь раз, Constellation прибавила более 80% - сектор оказался слишком чувствительным к любым сомнениям в темпах спроса.

При этом фон не полностью негативный: власти США ускоряют подключение дата-центров к электросетям, а Oracle готовится к масштабному размещению облигаций для займов на строительства новых центров обработки данных.
bloomberg

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
164👍24🥰3😁32🔥2💯1💔1🤝1🤗1🦄1
🤖 MiniMax-M2: новая MoE-модель серии MiniMax

MiniMax-M2 переосмысливает эффективность: это 230 млрд параметров (из них активно только 10 млрд) - мощная, быстрая и экономичная модель, которая сочетает интеллект уровня топовых LLM с оптимизацией под агентные применения и программирование.

🔹 Основные особенности

🧠 Интеллект мирового уровня.
По данным *Artificial Analysis*, MiniMax-M2 демонстрирует отличные результаты в математике, науке, программировании, следовании инструкциям и использовании инструментов.
Модель занимает #1 место среди всех open-source моделей по суммарному индексу интеллекта.

💻 Кодинг
Разработана для полного цикла разработкт - от файловых правок до тестировании кода и его автокоррекции.

Модель показывает отличные результаты на Terminal-Bench и (Multi-)SWE-Bench, что делает её эффективной в IDE, терминалах и CI-системах.

🧩 Агентные возможности.
MiniMax-M2 умеет планировать и выполнять сложные цепочки действий через shell, браузер, retrieval и code runners.
В тестах BrowseComp уверенно находит труднодоступные источники и восстанавливается после сбоев, не теряя цепочку рассуждений.

MiniMax M2 построена по принципу GPT-OSS и использует сочетание Full Attention и Sliding Window Attention (SWA). Это помогает эффективно работать с длинным контекстом - часть модели анализирует всё сразу, другая концентрируется на ближайших фрагментах текста.

Каждая attention-голова имеет собственный RMSNorm, а блоки Full Attention и SWA используют разные RoPE-параметры, это повышает гибкость и устойчивость модели.

MiniMax-M2 - это новый стандарт эффективности для AGI-агентов и кодинга: умнее, быстрее и дешевле, чем аналоги.

https://huggingface.co/MiniMaxAI/MiniMax-M2

@ai_machinelearning_big_data


#AI #MiniMax #LLM #ArtificialIntelligence #Benchmarks
🔥5526👍12🤗5💘2
В России растет тренд на использование нейросетей в облачной инфраструктуре

Компании перестали опасаться ИИ в облаках и всё чаще используют их в своих корпоративных процессах. Облачные платформы предлагают готовые инструменты для адаптации моделей под задачи компании, для создания ИИ-ассистентов и агентских систем, они также предлагают более выгодную и прогнозируемую экономику внедрения.

Пример: в Yandex AI Studio с начала 2025 года спрос на генеративные модели вырос в 5 раз, каждый месяц на платформе потребляют десятки миллиардов токенов. На ней активно используются как собственные модели YandexGPT, так и опенсорсные решения вроде Qwen3-235b, применяемые для агентских сценариев и генерации кода.


При этом опенсорс-модель от AliBaba уже на втором месте по потреблению после YandexGPT.

@ai_machinelearning_big_data

#AI #ML #GenerativeAI
👍37🤣2410🤬4🔥3🥰2😁2🌚2🌭2🤝1🦄1
⚡️ LMMs Engine - единый движок для обучения мультимодальных моделей

Простой, гибкий и мощный фреймворк от LMMs-Lab для обучения моделей, которые понимают текст, изображения, аудио и видео, всё в одном месте.

Что внутри:
• Поддержка 19+ архитектур, включая:
• Qwen3-VL - обработка изображений в native-разрешении, контекст до 10 000+ токенов
• Qwen2.5-Omni - единая модель для текста, изображений и аудио
• WanVideo - генерация видео из текста/изображений (T2V, I2V, V2V)
• dLLM - диффузионные языковые модели
• LLaVA-OneVision, Bagel, SiT, RAE-SigLip и другие

📜 Лицензия: Apache 2.0 (можно использовать даже в коммерческих проектах)

🔗 GitHub: https://github.com/EvolvingLMMs-Lab/lmms-engine

@ai_machinelearning_big_data

#llm #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5929🔥7🤗2🥰1
🖥 Технологическая платформа Авито открыла доступ к своим нейросетям — A-Vibe и A-Vision

Они дообучены на миллионах данных e-commerce, и предназначены для решения задач рынка. ИИ от Авито называют первыми российскими моделями с глубокой оптимизацией под электронную коммерцию и русский язык. A-Vibe занимает лидирующие позиции в различных популярных рейтингах не только по пониманию русского, но и по работе с кодом, решению сложных задач. Компания вложила в разработку моделей более полумиллиарда рублей.

Вместе с этими инструментами команда Авито выпустила переведенные на русский версии известных тестов для замера качества моделей. Ранее они были доступны только на английском.

Эксперты отмечают, что у отечественных компаний до сих пор не было открытых моделей, обученных специально на русском языке и под локальные сценарии электронной коммерции. Авито, по их мнению, — один из немногих игроков, который располагает достаточными объемами данных и вычислительными ресурсами, чтобы предложить рынку уже обученные и протестированные решения. Это снизит порог входа для стартапов и корпоративных разработчиков, которые смогут создавать продукты на базе готовых моделей, а не тратить ресурсы на адаптацию западных или азиатских систем.

Моделями можно воспользоваться бесплатно в любых целях — все данные и документация находятся на Hugging Face.

@ai_machinelearning_big_data

#news #ai #ml
👍6015😁7🥰4👾3🔥2
⚡️ Glyph: масштабирование контекста через визуально-текстовую компрессию

В основе модели лежит простая идея : вместо того чтобы кормить модели километровый текст, Glyph превращает его в изображение и обрабатывает через vision-language модель.

Используется LLM-управляемый генетический алгоритм, чтобы подобрать наилучшие параметры визуального отображения текста (шрифт, плотность, макет), балансируя между сжатием и точностью.

Это радикально снижает вычислительные затраты, сохраняя при этом смысловую структуру текста.

При этом точность почти не падает: на задачах с длинным контекстом Glyph работает на уровне современных моделей вроде Qwen3-8B.

При экстремальном сжатии VLM с контекстом 128K может эффективно обрабатывать задачи, эквивалентные 1M+ токенов в традиционных LLM.

Фактически, длинный контекст становится мультимодальной задачей, а не чисто текстовой.

📄 Подробности: arxiv.org/abs/2510.17800

🧩 Веса: huggingface.co/zai-org/Glyph

👉 Репозиторий: github.com/thu-coai/Glyph

@ai_machinelearning_big_data


#AI #LLM #Multimodal #Research #DeepLearning
👍78🔥3018😨10
🧠 Thinking Machines представила - On-Policy Distillation

Исследователи из Thinking Machines Lab предложили метод, который может изменить то, как обучаются языковые модели. Он называется on-policy distillation - и учит ИИ не просто копировать, а думать и анализировать свои ошибки.

Обычно «дистилляция» работает просто: большая модель-учитель показывает ответы, а маленькая модель-ученик запоминает их. Это похоже на заучивание по шпаргалке - быстро, но без понимания сути.

В новом подходе всё иначе. Ученик сам решает задачи, а учитель оценивает и направляет - объясняет, где логика сбоит и как улучшить рассуждение. Таким образом, меньшая модель перенимает не только знания, но и способ мышления более крупной модели.

Что показали результаты

Эксперименты проводились на задачах математического и логического рассуждения, где важно не просто выдать правильный ответ, а выстроить цепочку шагов.

Результаты впечатляют:

Модель-ученик после обучения с on-policy distillation показала почти ту же точность, что и гораздо более крупная модель-учитель.

При этом вычислительные затраты снизились в несколько раз, делая модель заметно эффективнее и дешевле.

Кроме того, ученик стал лучше понимать собственные ошибки, что повысило устойчивость и надёжность при решении новых, незнакомых задач.

Почему это важно
On-policy distillation решает ключевую проблему традиционных методов - отсутствие адаптивности.
Модель теперь учится на собственных шагах, как человек, — экспериментирует, ошибается, корректирует поведение и растёт.

Уникальность подхода - в балансе между качеством RL и экономичностью KD. Это реальная схема, где маленькая модель учится “в поле” (реагируя на собственные действия), но без дорогих RL-запусков и сложных reward-моделей.

Это не новый метод обучения, а новая инженерная формула, которая позволяет дешевле «учить» компактные модели, ведущие себя как большие.

Это открывает путь к созданию компактных LLM нового поколения, которые рассуждают почти как топовые модели, но стоят в разы дешевле.

Такие модели можно запускать на edge-устройствах, в автономных агентах и локальных сервисах, где важны скорость, приватность и энергоэффективность.

🟠 Подробнее: thinkingmachines.ai/blog/on-policy-distillation/

@ai_machinelearning_big_data


#ThinkingMachines #llm #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥10149👍20👏2😁2🤗2