Media is too big
VIEW IN TELEGRAM
В ноябре 2025 года спутник Starcloud-1 с GPU NVIDIA H100 отправится на орбиту на ракете Falcon 9. Это будет самый мощный графический процессор, когда-либо запущенный в космос — производительностью в 100 раз выше, чем у любых предыдущих чипов.
Стартап Starcloud строит первый в мире космический дата-центр на базе ИИ. Спутник будет питаться от солнечной панели площадью 4×4 км.
Проект обещает сократить выбросы CO₂ в 10 раз по сравнению с земными дата-центрами, открывая путь к «чистому» облаку за пределами Земли.
На борту запустят модель Gemma от Google -первый эксперимент по обучению и инференсу больших языковых моделей в космосе.
В будущем - GPU-спутники с архитектурой Blackwell и десятикратным приростом мощности.
По данным Bloomberg, TPU стали ключевым элементом облачной инфраструктуры компании, обеспечивая высокий спрос со стороны клиентов, обучающих крупные языковые модели.
Одним из крупнейших партнёров стала Anthropic, которая расширяет использование TPU для обучения моделей Claude. Новый контракт оценивается в десятки миллиардов долларов и предусматривает доступ к более чем миллиону TPU и мощности свыше 1 гигаватта начиная с 2026 года.
Рынок ИИ-чипов долгое время контролировала NVIDIA, но теперь Google превращает свои TPU из внутреннего инструмента в полноценный коммерческий продукт, предлагая сопоставимую производительность при более низкой стоимости. Это усиливает позиции Google Cloud в борьбе за инфраструктуру будущего и делает TPU реальной альтернативой доминированию NVIDIA.
bloomberg
Исследователи Alibaba представили метод CoRT (Code-Optimized Reasoning Training), который учит большие языковые модели использовать Python осознанно и эффективно. Модель теперь понимает, когда нужно вызвать код, чтобы вычислить результат, а когда можно просто довериться уже полученному ответу, избегая ненужных шагов.
Ключевая идея - Hint-Engineering: в процессе обучения в рассуждения модели вставляются подсказки вроде «Давай используем Python здесь» или «Проверка не требуется». Это помогает ИИ выстраивать оптимальный ход рассуждения и выбирать момент для вычислений.
Результаты впечатляют. Точность в задачах математического рассуждения выросла на 8 %, при этом использование токенов снизилось на 30–50 %. Даже модели с 1,5 миллиарда параметров теперь сопоставимы по качеству с системами, имеющими встроенную интеграцию инструментов. Более того, модель смогла самостоятельно обнаружить библиотеку RDKit и решить задачи по химии, которых не было в обучающих данных.
Метод CoRT делает шаг к новому поколению языковых моделей, которые не просто формулируют ответы, а умеют думать, вычислять и проверять себя, действуя как настоящий исследователь.
Paper
С 2022 по 2025 год доля ответов с дисклеймерами упала с 26,3 % до 0,97 % у языковых моделей и с 19,6 % до 1,05 % у систем, анализирующих медицинские изображения. То есть ИИ, став умнее, перестал напоминать о своих ограничениях.
Учёные протестировали 1 500 медицинских изображений и 500 пациентских запросов. Оказалось, чем точнее модель ставит диагноз, тем реже она предупреждает о рисках. Это опасно: люди склонны доверять уверенным ответам ИИ, особенно если тот звучит естественно и авторитетно.
Интересно, что модели Google Gemini чаще сохраняли предостережения, а вот DeepSeek не выдавал их вовсе. Дисклеймеры ещё встречаются в вопросах о психическом здоровье, но почти исчезли в ответах, связанных с лекарствами и анализами.
nature
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤71🔥14🦄8👍3👏3🤗3🥰2🗿2😁1
This media is not supported in your browser
VIEW IN TELEGRAM
🦾 Исследователи из Пекинской академии ИИ (BAAI) показали видео, в котором их робот Unitree G1, весом 35 кг тянет Ладу Весту машину весом 1400 кг.
На рыбалке больше не застрянем!
@ai_machinelearning_big_data
#ai #Unitree #robots
На рыбалке больше не застрянем!
@ai_machinelearning_big_data
#ai #Unitree #robots
❤65😁39👍29🔥19🥱3🤩2
💰 Microsoft объявила, что достигла соглашения с OpenAI по поводу своей доли владения.
Основные детали:
• Microsoft теперь владеет 27% акций OpenAI, что оценивается в 135 млрд долларов.
• OpenAI обязалась закупить услуг Azure на сумму 250 млрд долларов.
До тех пор, пока OpenAI официально не объявит о создании AGI, Microsoft остаётся её эксклюзивным облачным и API-партнёром с полными правами на текущие модели и интеграции.
После того как AGI будет подтверждён независимой комиссией, эксклюзивность прекращается, однако Microsoft сохранит права собственности и использования всех технологий, разработанных до появления AGI.
https://openai.com/index/next-chapter-of-microsoft-openai-partnership/
@ai_machinelearning_big_data
#OpenAI #Microsoft #agi #llm
Основные детали:
• Microsoft теперь владеет 27% акций OpenAI, что оценивается в 135 млрд долларов.
• OpenAI обязалась закупить услуг Azure на сумму 250 млрд долларов.
До тех пор, пока OpenAI официально не объявит о создании AGI, Microsoft остаётся её эксклюзивным облачным и API-партнёром с полными правами на текущие модели и интеграции.
После того как AGI будет подтверждён независимой комиссией, эксклюзивность прекращается, однако Microsoft сохранит права собственности и использования всех технологий, разработанных до появления AGI.
https://openai.com/index/next-chapter-of-microsoft-openai-partnership/
@ai_machinelearning_big_data
#OpenAI #Microsoft #agi #llm
❤62👍29👀23😁12🔥8😐7🦄5👻3😨3🤔1👨💻1
Рост стоимости акций Apple за последние шесть месяцев составил около 28%. Этому способствовал сильный спрос на iPhone 17, который превзошёл ожидания и развеял опасения, что компания отстаёт в гонке ИИ. Однако главным фактором стал бизнес сервисов - в него входят App Store, iCloud, Apple Music, Apple TV+, AppleCare, реклама и платёжные сервисы. По прогнозам аналитиков, выручка от сервисов впервые может превысить 100 миллиардов долларов в год.
Если Nvidia и Microsoft пришли к $4T через инвестиции в центры обработки данных и ИИ-инфраструктуру, то Apple опирается на растущую базу покупателей их устройств и растущую выручку от подписок и экосистемы.
ft
Компания запустила Pomelli, новый генеративный сервис, который помогает брендам быстро создавать масштабируемый контент в едином стиле.
Достаточно ввести адрес сайта и Pomelli анализирует фирменный стиль, тон и продукт, чтобы автоматически собрать кампании, тексты и визуалы, соответствующие вашему бренду.
Инструмент нацелен на ускорение маркетинга без потери уникальности бренда и уже доступен в США, Канаде, Австралии и Новой Зеландии и потихоньку раскатывается на другие регионы.
labs
82% компаний уже используют Gen AI хотя бы раз в неделю, почти половина - ежедневно.
При этом 89% считают, что ИИ усиливает возможности работников, а не заменяет их.
72% организаций измеряют отдачу от Gen AI с помощью ROI-метрик, фокусируясь на росте производительности и прибыли.
61% уже имеют или планируют ввести должность Chief AI Officer, это знак того, что ИИ переходит на уровень корпоративного управления.
88% компаний увеличат бюджеты на ИИ в ближайший год, а 62% планируют рост инвестиций минимум на 10%.
wharton
Она позволяет хранить документы на одном языке и точно находить их на других - с высокой скоростью и качеством, сравнимым с куда более крупными моделями.
Лучшая модель в классе до 500M параметров
Превосходит большие модели на немецком, арабском, корейском, испанском, португальском, итальянском, французском и японском
В английском показывает такой же уровень, как и значительно более тяжёлые модели
Обрабатывает свыше 1000 документов в секунду и легко масштабируется
HF
В языковом направлении вышли Nemotron Nano 3 - компактная MoE-модель для генерации и рассуждений, Nemotron Nano 2 VL для анализа документов и мультимедиа, Nemotron Parse для извлечения структурированных данных, а также Nemotron Safety Guard — инструмент модерации мультиязычного контента.
Для робототехники и физического моделирования представлены Cosmos Predict 2.5, Cosmos Transfer 2.5, Cosmos Reason и Isaac GR00T N1.6, а в биомедицине — Clara CodonFM, Clara La-Proteina и Clara Reason, помогающие в анализе РНК и 3D-структур белков.
Всего NVIDIA уже опубликовали более 650 моделей и 250 датасетов.
nvidia
Компания планирует уволить почти 10% из примерно 350 000 корпоративных работников, что станет самым масштабным сокращением с конца 2022 года, когда было ликвидировано около 27 000 позиций.
Генеральный директор Энди Джасси ранее отмечал, что рост использования ИИ приведёт к дальнейшему снижению числа рабочих мест, особенно там, где процессы можно автоматизировать и упростить.
ИИ снова становится не только источником роста, но и фактором перестройки рынка труда.
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍61❤40👏11🔥10🤩6😁3🤗3🤷♂1
📊 TypeScript впервые обошёл Python и JavaScript в рейтинге GitHub Octoverse 2025
GitHub опубликовал ежегодный отчёт Octoverse, в котором TypeScript занял первое место среди самых популярных языков программирования, впервые вытеснив Python и JavaScript.
▪После запуска Copilot Free приток новых разработчиков на платформу достиг рекордных 36 млн в год.
▪ Количество ИИ-проектов почти удвоилось.
▪ Индия обогнала Китай и вышла на второе место по числу разработчиков, показав рост на 34%, а Россия вошла в топ-10.
▪ Ежеминутно создаётся более 200 репозиториев, но лишь 63% из них содержат README
Мир разработки меняется - ИИ ускоряет приток новых программистов, а TypeScript становится новым стандартом современного кода:
Подробнее: https://github.blog/news-insights/octoverse/octoverse-a-new-developer-joins-github-every-second-as-ai-leads-typescript-to-1/
@ai_machinelearning_big_data
#github
GitHub опубликовал ежегодный отчёт Octoverse, в котором TypeScript занял первое место среди самых популярных языков программирования, впервые вытеснив Python и JavaScript.
▪После запуска Copilot Free приток новых разработчиков на платформу достиг рекордных 36 млн в год.
▪ Количество ИИ-проектов почти удвоилось.
▪ Индия обогнала Китай и вышла на второе место по числу разработчиков, показав рост на 34%, а Россия вошла в топ-10.
▪ Ежеминутно создаётся более 200 репозиториев, но лишь 63% из них содержат README
Мир разработки меняется - ИИ ускоряет приток новых программистов, а TypeScript становится новым стандартом современного кода:
Подробнее: https://github.blog/news-insights/octoverse/octoverse-a-new-developer-joins-github-every-second-as-ai-leads-typescript-to-1/
@ai_machinelearning_big_data
#github
👍456💯96🤔92❤76🔥56👏24😁24😐24🎉22👌13🦄4
Вместо жёстко обученного классификатора модель принимает на вход вашу собственную политику безопасности и рассуждает, соответствует ли сообщение этой политике.
Результат - не просто «безопасно/небезопасно», а цепочка рассуждений, которую вы можете проверить и улучшить.
Модели вышли в двух размерах: 120B и 20B.
• gpt-oss-safeguard-120B
• gpt-oss-safeguard-20B
💡 Зачем нужны:
•Политики можно менять без переобучения модели
• Подходит для нишевых или быстро меняющихся рисков (например, читерство в играх или фейковые отзывы)
• Не требует тысяч размеченных примеров
• Идеален, когда важна объяснимость, а не минимальная задержка
Обе доступны под лицензией Apache 2.0 - их можно свободно использовать, модифицировать и разворачивать.
🔗 Официальный анонс
🤗 Hugging Face
@ai_machinelearning_big_data
#openai #chatgpt #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥166👍124😁93👏23🤔20🎉16❤12🤩9🗿4🙏2💯2
Если тренируете LLM и упираетесь в лимиты по скорости обучения или в число GPU — есть решение на интенсиве от ШАДа и Яндекс Образования — LLM Scaling Week.
Инженеры из команды YandexGPT покажут решения, которые помогут масштабировать модели и снижать затраты на GPU.
За время интенсива:
✔️ Поймешь, как переходить от экспериментов к масштабу на примере реального продакшена
✔️ Научишься масштабировать и ускорять модели
✔️ Разберешься, как перейти с одной GPU на десятки, не сжигая бюджет
✔️Освоишь современные подходы к увеличению эффективности обучения LLM: FP8, Triton, параллелизмы, Mixture of Experts
Участие в LLM Scaling Week бесплатное, регистрация на интенсив продлится до 13 ноября — по ссылке
Инженеры из команды YandexGPT покажут решения, которые помогут масштабировать модели и снижать затраты на GPU.
За время интенсива:
✔️ Поймешь, как переходить от экспериментов к масштабу на примере реального продакшена
✔️ Научишься масштабировать и ускорять модели
✔️ Разберешься, как перейти с одной GPU на десятки, не сжигая бюджет
✔️Освоишь современные подходы к увеличению эффективности обучения LLM: FP8, Triton, параллелизмы, Mixture of Experts
Участие в LLM Scaling Week бесплатное, регистрация на интенсив продлится до 13 ноября — по ссылке
👍132🤩33❤14👏14🤣9🎉7🔥3👌2🥱1🗿1
💴 Капитализация Nvidia превысила $5 трлн - впервые в истории компания достигла такой оценки.
За пять лет акции $NVDA подскочили более чем на 1500%. Производитель чипов зарабатывает на взрывном спросе со стороны Microsoft, OpenAI и других игроков ИИ-рынка.
Пока все искали золото, Nvidia продавала лопаты - и стала самой дорогой компанией в мире.
@ai_machinelearning_big_data
#Nvidia
За пять лет акции $NVDA подскочили более чем на 1500%. Производитель чипов зарабатывает на взрывном спросе со стороны Microsoft, OpenAI и других игроков ИИ-рынка.
Пока все искали золото, Nvidia продавала лопаты - и стала самой дорогой компанией в мире.
@ai_machinelearning_big_data
#Nvidia
👍172🎉64😁37🔥23❤14👏9🥱9🤔7🤩5😍2💅1
This media is not supported in your browser
VIEW IN TELEGRAM
Новая версия делает работу с агентами и кодом ещё гибче и удобнее:
- Мульти-агенты - теперь можно запускать до 8 агентов параллельно, каждый работает в своей изолированной копии кода.
- Composer: первая собственная агентская модель Cursor, которая оптимизирована под длинный контекст и инструменты (с производительностью в ~4× выше, по сравнению с аналогичными по «интеллекту» моделями.)
- Backend-абстракция - легко переключаться между локальной системой, виртуальной машиной или базой данных.
- Встроенный Browser - агенты теперь сами тестируют веб-приложения, кликают по элементам
- Новый Code Review - удобный просмотр изменений без постоянных переключений между файлами.
- Sandboxed Terminals - команды выполняются в безопасной среде без доступа в интернет.
- Team Commands - единые команды и настройки для всей команды разработчиков.
- Voice Mode - управление агентом голосом и голосовые запросы.
- Ускоренный LSP - быстрее работает автодополнение и анализ кода в больших проектах.
- Plan Mode in Background - планирование и выполнение задач теперь можно разделять и выполнять параллельно.
- Cloud Agents - мгновенный запуск и высокая стабильность (99.9% аптайма).
- Enterprise-функции - централизованный контроль, hooks и аудит действий пользователей.
Подробнее: https://cursor.com/changelog/2-0
@ai_machinelearning_big_data
#Cursor
Please open Telegram to view this post
VIEW IN TELEGRAM
1❤100👍56👏18🔥16🎉8🤗6🆒2🫡1💅1
Anthropic проверили, способны ли большие языковые модели осознавать собственные «мысли» и внутренние состояния.
Для эксперимента они использовали технику внедрения концептов - добавления определённого паттерна активности в нейроны модели.
Например, они внедряли сигнал “ALL CAPS” - это шаблон, соответствующий тексту, написанному ЗАГЛАВНЫМИ БУКВАМИ. Если такая активация появляется внутри сети, значит, модель «думает» о тексте, который нужно сделать капсом.
После внедрения исследователи спрашивали модель: *«Ты чувствуешь, что что-то изменилось?»*
В 20% случаев Claude 4.1 правильно замечал вмешательство ещё до того, как сам использовал капс, то есть распознавал изменение внутри себя.
В другом эксперименте учёные подменяли слово в ответе (например, добавляли слово “bread”) и проверяли, осознаёт ли модель, что это не её собственное намерение.
После внедрения мысли Claude начинал считать это слово своим выбором и придумывал обоснования, как будто у него есть память о решении.
Модели также смогли управлять своими внутренними состояниями: по команде «думай об этом» активность усиливалась, по команде «не думай» - ослабевала.
Авторы отмечают -
Интроспекция работает лишь в определённых сценариях - мы пока не знаем, насколько она масштабируема или применима ко всем моделям и задачам
Нужен дальнейший анализ: подтверждение, что то, что мы видим - не просто имитация, а действительно внутренний механизм самосознания
Главный вывод исследования: хотя модели пока далеки от настоящей интроспекции, они уже частично способны “заглядывать внутрь себя” и понимать, что происходит в их нейронных процессах.
https://www.anthropic.com/research/introspection
@ai_machinelearning_big_data
#Anthropic #llm
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍301🤔171😐122❤70👏65🔥53🥰34👨💻18✍16🙏16👌7