This media is not supported in your browser
VIEW IN TELEGRAM
NVIDIA показала, как ускорить его в 40 раз — без переписывания кода.
Команда NVIDIA провела эксперимент с 18 миллионами строк данных с фондовых рынков: они выполнили типичный анализ данных с помощью pandas на CPU, а затем тоже самое — на GPU, используя
cudf.pandas
.Для примеры были взяты:
🧊 В общей сложности ~18M строк
Результат впечатляет : удалось добиться**ускорения обработки данных в 20–40 раз
Код скрипта не менялся вообще — тот же pandas, но на GPU.
Это один из примеров, где ускорение достигается без переписывания логики кода.
@ai_machinelearning_big_data
#datascience #ml #nvidia #gpu #pandas #python
Please open Telegram to view this post
VIEW IN TELEGRAM
1❤124👍40🔥18😁3🤔3🤣2
OpenReasoning-Nemotron - набор LLM на архитектуре Qwen 2.5 и дистиллированных из DeepSeek-R1-0528 ( 671 млрд. параметров):
Семейство было обучено на 5 млн. примеров рассуждений в математике, естественных науках и программировании.
Модели показали достойные результаты pass@1 на бенчах GPQA, MMLU-PRO, AIME, HMMT и LiveCodeBench - без использования RL.
Старшая модель, 32B, выбила 96,7% по HMMT с декодированием GenSelect.
@ai_machinelearning_big_data
#AI #ML #LLM #Reasoning #Nemotron #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤90👍23🔥19🥰3👏3
Научить робота уверенно брать предметы - это, кажется, вечная тема в робототехнике. Несмотря на десятилетия исследований, надежные и универсальные системы захвата до сих пор остаются скорее теорией, чем реальностью.
Стоит копнуть глубже стандартных демо, и выясняется, что на сложных бенчмарках, FetchBench например, точность лучших систем едва дотягивает до 20%. Это фундаментальный барьер, мешающий внедрять роботов в реальные, неструктурированные среды.
GraspGen - фреймворк для генерации 6-DOF захватов, который не только показывает SOTA результаты, но и вводит новый, крайне интересный подход к обучению.
В его основе лежит связка из генератора на базе Diffusion Transformer и дискриминатора, знакомая всем по GAN-ам архитектура, но с важным отличием.
Генератор, получив на вход облако точек объекта, предлагает множество вариантов захвата, а дискриминатор оценивает их качество и отсеивает неудачные.
И вот тут-то и кроется основная идея, которую в NVIDIA назвали «On-Generator Training». Вместо того чтобы обучать дискриминатор на заранее собранном офлайн-датасете из "хороших" и "плохих" захватов, его учат непосредственно на тех ошибках, которые генерирует его подопечный - диффузионная модель.
Иными словами, дискриминатор становится экспертом не в захватах вообще, а в типичных промахах конкретного генератора. Он учится распознавать и отбраковывать именно те ложноположительные варианты, которые сам генератор считает удачными, но которые на самом деле приведут к провалу. Такой подход создает мощную и целенаправленную обратную связь.
Разработчики выпустили симулированный датасет, содержащий более 53 млн. примеров захватов для 3 разных типов манипуляторов, включая параллельные захваты и вакуумные присоски.
В симуляции на сете ACRONYM GraspGen показывает AUC (площадь под кривой точность-покрытие) 0.94, это больше ближайших конкурентов на 48%.
На комплексном бенче FetchBench он обошел предыдущих лидеров M2T2 и Contact-GraspNet на 7.8% и 16.9% соответственно.
Но самое главное - это тесты на реальном железе. В экспериментах с роботом UR10 в зашумленной среде GraspGen достиг общей успешности в 81.3%, в то время как M2T2 и AnyGrasp показали лишь 52.6% и 63.7%.
Код, веса моделей и датасет уже доступны на GitHub и Hugging Face.
Авторы позаботились об энтузиастах: есть подробные инструкции по установке через Docker или pip, готовые демо-скрипты, позволяющие визуализировать захваты для своих облаков точек или 3D-моделей буквально в несколько команд.
Более того, GraspGen изначально спроектирован как модульная и расширяемая система. Разработчики предоставляют подробный туториал, который объясняет, как генерировать данные и обучать модели для совершенно новых объектов и, что важнее, новых типов манипуляторов, реализуя принцип BYOD.
Интеграция с симулятором Isaac Lab для еще более продвинутой генерации данных и возможность дообучения на реальных данных.
@ai_machinelearning_big_data
#AI #ML #Robotics #GraspGen #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥63❤35👍24😁4🎉3👨💻1
NVIDIA показала, как 1.5B-модель можно раскачать до топовых результатов в логике, математике, коду и STEM-задачам — без увеличения параметров модели.
📈 Результат после месяцев обучения:
+55% к логическим задачам
+14.7% к математике
+13.9% к коду
+25.1% к сложным STEM-вопросам
🛠 Как они это сделали:
– Использовали RL (обучение с подкреплением) на 5 типах задач, включая 40K примеров по математике и 24K по программированию
– Все ответы проверялись автоматически в "песочнице", которая оценивает, правильный ли результат
– Применили улучшенную стратегию обучения — *Group Relative Policy Optimization* — и добавили несколько хитрых трюков:
Все эти приёмы помогли сохранить интерес модели к поиску новых решений, а не скатываться к заученным паттернам.
Итог: модель не "застывает", а продолжает исследовать — и выдает стабильный рост качества без расширения архитектуры.
📄 Почитать статью полностью : arxiv.org/abs/2507.12507
@ai_machinelearning_big_data
#ml #ai #nvidia
Please open Telegram to view this post
VIEW IN TELEGRAM
4🔥125👍35❤19😐2🗿2😁1👨💻1
Что она умеет:
-
- Автоматическая пунктуация, капитализация и точные таймстампы до слова.
- Поддержка русского, французского, немецкого, испанского и многих других языков.
Чем интересна
- До 10× быстрее инференс, чем у моделей в 3 раза больше.
- Уже показывает state-of-the-art точность среди открытых моделей на Hugging Face.
- Лицензия CC-BY-4.0 — можно свободно использовать в проектах.
Под капотом:
- Архитектура: FastConformer-энкодер + Transformer-декодер (~978M параметров).
- Форматы:
.wav
и .flac
, моно 16 кГц. - Легко интегрируется через NVIDIA NeMo или прямо с Hugging Face.
Где пригодится:
Всего ~978M параметров → легче, быстрее и дешевле в использовании, чем большие модели конкурентов.
@ai_machinelearning_big_data
#AI #NVIDIA #SpeechRecognition #ASR #AST #Multilingual #MachineLearning #DeepLearning
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍87🔥39❤16✍2
Jet-Nemotron - новая архитектура языковых моделей, которая, по заявлениям NVIDIA, превосходит по эффективности топовые опенсорс-модели.
На H100 обещают ускорение пропускной способности при генерации до 53.6 раз, если работать с контекстом в 256 тыс. токенов и максимальным размером батча. Такой скачок производительности стал возможен благодаря двум ключевым инновациям: пайплайну PostNAS и новому блоку линейного внимания JetBlock.
Суть PostNAS состоит в отказе от дорогостоящего обучения новых архитектур с нуля. Вместо этого берут уже предварительно обученную модель и запускают процесс постобработки. Пайплайн сначала анализирует модель и определяет, какие слои внимания вносят наибольший вклад в её работу, а какие - не так уж и важны. Дальше он ищет оптимальное расположение для слоёв полного внимания и подбирает улучшенный дизайн для остальных блоков.
Его фишка - динамические сверточные ядра, генерируемые на лету в зависимости от входных данных и применяемые к value-токенам.
Прямое сравнение с Mamba2 Block, проведенное на идентичных данных и с одинаковыми параметрами обучения, показало существенный прирост в точности при сохранении той же пропускной способности во время обучения и инференса.
Вместо того чтобы использовать количество параметров в качестве прокси-метрики для эффективности, авторы напрямую оптимизируют архитектуру под целевое железо (H100), используя в качестве цели именно пропускную способность генерации.
Ключевое открытие тут в том, что размер KV-кэша, а не количество параметров, является критическим фактором, ограничивающим скорость генерации на длинных контекстах, поскольку декодирование упирается в пропускную способность памяти.
Фиксируя размер кэша, они провели поиск по размерности ключей/значений и числу голов внимания, обнаружив конфигурации, которые при том же объеме кэша и схожей пропускной способности используют больше параметров для достижения более высокой точности.
Итоговый дизайн Jet-Nemotron, построенный на базе Qwen 2.5, включает всего 2 full-attention слоя (для retrieval) и 2 слоя со скользящим вниманием (SWA, для MMLU), остальные — JetBlock.
Что касается конкретных моделей, то уже есть
Jet-Nemotron-2B
и Jet-Nemotron-4B
. По результатам тестов, они как минимум не уступают по точности ведущим эффективным моделям, например, Qwen3, на целом ряде бенчмарков. При этом младшая модель Jet-Nemotron-2B работает в 21 раз быстрее, чем Qwen3-1.7B-Base, а старшая, Jet-Nemotron-4B, обгоняет её уже в 47 раз. @ai_machinelearning_big_data
#AI #ML #LLM #NVIDIA #JetNemotron
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍61❤29🔥20💘2❤🔥1👏1
UDR — настраиваемый агент для глубокого ресёрча, который «оборачивается» вокруг любого LLM.
Почему это важно:
По сути, это гибкий ресёрч-агент, который можно адаптировать под любой рабочий процесс.
@ai_machinelearning_big_data
#NVIDIA #UDR #UniversalDeepResearch #AI #LLM #ResearchAgent #AIAgents #DeepResearch
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍88❤30🔥13🤔2💘2😁1👀1
Аналитики считают: если бы Google выделила бизнес по TPU-чипам вместе с лабораторией DeepMind, то объединённая компания могла бы стоить около $900 млрд.
Пока этого не произойдёт, но сама цифра показывает масштаб.
- 6-е поколение Trillium уже пользуется высоким спросом
- 7-е поколение Ironwood станет первым TPU, ориентированным на крупномасштабный inference — этап, когда модели реально используются после обучения
Anthropic и xAI активно рассматривают переход на TPU, так как улучшенная поддержка через JAX делает их использование на больших масштабах заметно проще.
Google уже заключила сделку с Fluidstack (Нью-Йорк) и ведёт переговоры с другими облачными провайдерами, которые раньше работали в основном с NVIDIA (например, Crusoe и **CoreWeave**).
В итоге Google выходит в прямую конкуренцию с NVIDIA — и впервые за долгое время у «зелёного гиганта» появился серьёзный соперник.
@ai_machinelearning_big_data
#google #nvidia #tpu #deeplearning
Please open Telegram to view this post
VIEW IN TELEGRAM
👍64🔥19❤10🤔3💘1
Forwarded from Machine learning Interview
⚛️🔬🚀 PsiQuantum привлекла рекордные $1 млрд для строительства квантового компьютера с 1 млн кубитов к 2028 году — это крупнейший раунд финансирования в истории квантовых технологий.
📈 Теперь компания оценена в $7 млрд и напрямую конкурирует с Google и IBM в гонке за создание полнофункциональной машины.
💰 Среди инвесторов: BlackRock, Temasek, Baillie Gifford и венчурное подразделение Nvidia.
Квантовые компьютеры рассматриваются как ключ к созданию новых материалов и разработке лекарств, с чем классические методы справиться не могут. Но реальная польза от них появится только тогда, когда кубиты будут достаточно стабильны, а коррекция ошибок станет рабочим стандартом. PsiQuantum делает ставку на фотонные кубиты — частицы света, которые можно производить на обычных полупроводниковых фабриках и использовать с меньшим количеством криогенного оборудования. Именно эта ставка может позволить компании обойти конкурентов.
⚠️ Вызовы
- Полной коррекции ошибок пока нет
- Ранее цель на 2024 год по готовой системе была сорвана
- 1 млн физических кубитов нужен, чтобы получить лишь несколько надёжных логических кубитов для долгих программ
🌍 Контекст
- Конкуренты активно растут: Quantinuum собрал $600M (оценка $10B), IQM — $300M
- IonQ, Rigetti и D-Wave взлетели в капитализации до $22B (с <$5B в ноябре)
- Nvidia участвует в проекте, несмотря на осторожные прогнозы (20 лет до работающих систем), делая ставку на гибридный путь: квантовые + GPU суперкомпьютеры
🏗️ Первую полную квантовую установку PsiQuantum планирует построить в Австралии при поддержке правительства (A$940M), а вторую — в Чикаго.
🔗 Подробнее: https://ft.com/content/0a16281f-6bb4-4e60-a6f0-3a9d6f8d764a
#quantum #ai #nvidia #google #ibm #hardware #future
📈 Теперь компания оценена в $7 млрд и напрямую конкурирует с Google и IBM в гонке за создание полнофункциональной машины.
💰 Среди инвесторов: BlackRock, Temasek, Baillie Gifford и венчурное подразделение Nvidia.
Квантовые компьютеры рассматриваются как ключ к созданию новых материалов и разработке лекарств, с чем классические методы справиться не могут. Но реальная польза от них появится только тогда, когда кубиты будут достаточно стабильны, а коррекция ошибок станет рабочим стандартом. PsiQuantum делает ставку на фотонные кубиты — частицы света, которые можно производить на обычных полупроводниковых фабриках и использовать с меньшим количеством криогенного оборудования. Именно эта ставка может позволить компании обойти конкурентов.
⚠️ Вызовы
- Полной коррекции ошибок пока нет
- Ранее цель на 2024 год по готовой системе была сорвана
- 1 млн физических кубитов нужен, чтобы получить лишь несколько надёжных логических кубитов для долгих программ
🌍 Контекст
- Конкуренты активно растут: Quantinuum собрал $600M (оценка $10B), IQM — $300M
- IonQ, Rigetti и D-Wave взлетели в капитализации до $22B (с <$5B в ноябре)
- Nvidia участвует в проекте, несмотря на осторожные прогнозы (20 лет до работающих систем), делая ставку на гибридный путь: квантовые + GPU суперкомпьютеры
🏗️ Первую полную квантовую установку PsiQuantum планирует построить в Австралии при поддержке правительства (A$940M), а вторую — в Чикаго.
🔗 Подробнее: https://ft.com/content/0a16281f-6bb4-4e60-a6f0-3a9d6f8d764a
#quantum #ai #nvidia #google #ibm #hardware #future
❤40👍23🔥8🤷♂5
Теперь каждый чип будет заточен под конкретный этап LLM-инференса.
Инференс делится на два шага:
- Prefill - первая стадия. Требует огромной вычислительной мощности, но почти не использует память.
- Decode - вторая стадия. Наоборот, сильно нагружает память, но вычислений нужно меньше.
Раньше, например, R200 объединял в одном GPU и мощные вычислительные блоки, и много памяти. В итоге это было дорого и неэффективно:
- при Prefill простаивает память,
- при Decode — простаивают вычислительные блоки.
- Rubin CPX - оптимизирован для Prefill
• 20 PFLOPS вычислений
• 128 GB GDDR7
• 2 TB/s пропускная способность
- R200 — GPU под Decode
• 288 GB HBM4
• 20.5 TB/s памяти
📆 Планы компании:
- **2024–2025**-— линейка Blackwell (B200, GB300): рост вычислений и памяти.
- 2026–2027 - Rubin разделится:
• VR200 — для Decode (максимум HBM).
• CPX — для Prefill (много вычислений, дешёвая память).
- 2027 — VR300 Ultra: 66.7 PFLOPS и 1024 GB HBM4E.
Nvidia перестраивает линейку так, чтобы каждый GPU работал максимально эффективно именно под свой этап инференса.
#Nvidia #GPU #AI #Blackwell #Rubin #LLM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍119❤40🔥15🤔7🤬3
NVIDIA и Intel объявили о стратегическом партнёрстве сразу на несколько поколений продуктов.
NVIDIA инвестирует $5 млрд в акции Intel по $23.28 за штуку, а совместные решения будут объединять x86-CPU от Intel и RTX-GPU от NVIDIA через NVLink.
- Intel выпустит x86 SoC с интегрированными GPU-чиплетами NVIDIA RTX.
- Это даст более плотную связку CPU+GPU, чем PCIe (Peripheral Component Interconnect Express) - это высокоскоростная шина, которая используется для соединения различных компонентов компьютера)
- Intel создаст кастомные x86-CPU специально для NVIDIA.
- NVIDIA будет предлагать клиентам выбор: ARM или x86 в своих AI-платформах.
- Это усиливает позиции NVIDIA и даёт Intel шанс вернуться в топ.
💰 Финансовая часть
- NVIDIA покупает пакет акций Intel на $5 млрд.
- Сделка - про продуктовую коллаборацию, а не про производство GPU на Intel Foundry.
⚡️ Почему это интересно:
- Windows-ПК могут превратиться в полноценные AI-машины.
- Для дата-центров появится выбор CPU-архитектуры, что расширяет рынок NVIDIA.
- Для Intel — шанс доказать, что её CPU могут конкурировать в ключевых сегментах на рынке.
❓ Что остаётся за непонятным:
- Когда именно выйдут продукты и на каких процессах их будут делать.
- Детали NVLink: пропускная способность, топология памяти (DRAM ↔ HBM).
- Как будет выглядеть софт: CUDA/драйверы на Windows/x86, поддержка Linux.
- Как посчитают выручку: RTX-чиплеты в Intel-SoC и CPU в NVIDIA-платформах.
Это огромный плюс для Intel и стратегическое расширение для NVIDIA.
Если сделка произойдет, рынок ПК и дата-центров ждёт новая волна AI-систем.
А вот $AMD и $ARM теперь будет куда сложнее конкурировать.
После объявления о сделке акции Intel полетели вверх на безумные 30%.
@ai_machinelearning_big_data
#NVIDIA #Intel #NVDA #INTC #AI #GPU
Please open Telegram to view this post
VIEW IN TELEGRAM
👍77👨💻74🔥29❤17🤔13👏8🤬4
Идея проста: собрать тысячи Ascend-чипов в **SuperPod**-стойки с новой шиной UnifiedBus, чтобы они работали как единый ускоритель.
В 2026 году Huawei обещает SuperPod 950 с 8,192 чипами, что даст:
- в 6,7 раза больше вычислительной мощности,
- в 15 раз больше памяти,
- в 62 раза выше пропускную способность,
чем у Nvidia NVL144.
К 2028-му скорость связи между чипами хотят поднять до 4 Тбит/с (у Nvidia сейчас 1,8).
В будущем Huawei говорит даже о кластерах из миллиона чипов.
⚠️ Но главное слабое место — производство. После санкций компания лишилась доступа к фабрикам TSMC. Попытка сделать 5нм чип Ascend 910D провалилась: слишком мало годных кристаллов выходит с пластин. Последний реальный прорыв — 7нм чип в Mate 60 Pro в 2023 году.
У Китайцев есть амбиции и архитектура, но нет надёжного производства. Это и есть главный барьер на пути к конкуренции с Nvidia.
@ai_machinelearning_big_data
#Huawei #Nvidia #AIChips #SuperPod
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥77❤29👍17❤🔥3💘1
Media is too big
VIEW IN TELEGRAM
«Единственное, о чём я жалею, что не дал ему больше денег.
Когда речь идёт о проектах, в которых участвует Илон, ты хочешь быть частью этого. Он дал нам шанс инвестировать в xAI и это инвестиция в действительно великое будущее. Это не просто партнёрское финансирование, это вера в идею».
Крупнейшие компании Amazon, Microsoft и Google - управляют бизнесом на несколько триллионов долларов и тратят около сотни миллиадров на инфраструктуру дата-центров.
Но сейчас происходит тектонический сдвиг:
💡 переход от CPU-систем к генеративным AI-платформам на GPU, и этот переход только начинается.
Nvidia уже продала оборудования на сотни миллиардов долларов для этой новой эры,
но на фоне многотриллионного рынка AI-инфраструктуры и это тольео начало пути.
Мир вступает в долгосрочный цикл экспансии инвестиций в ИИ,
Nvidia - в самом центре этого колоссального рынка. 🚀
@ai_machinelearning_big_data
#Nvidia #xAI #ElonMusk #JensenHuang #AI #инвестиции #технологии #GPU
Please open Telegram to view this post
VIEW IN TELEGRAM
👍83❤21🔥21😁8🥱5💘2🐳1
Глава NVIDIA сегодня вручил Маску в штаб-квартире SpaceX самый маленький в мире ИИ-суперкомпьютер.
Ещё недавно такая производительность обеспечивалась целой комнатой серверов.
Теперь она помещается в коробку размером с рабочий ПК.
Такой компактный суперкомпьютер может использоваться для локального обучения и инференса нейросетей без дата-центров и облаков.
NVIDIA называет это началом новой эры персональных ИИ-ускорителей.
Мужчины честной судьбы встретились, в честь начала мировых поставок DGX Spark, которая начнется уже в эту среду.
Этот момент отсылает к истокам: в 2016 году именно Маск и его команда получили первый DGX-1 - тот самый суперкомпьютер, с которого началась эпоха ИИ-ускорителей NVIDIA.
Эх, нам бы такую коробочку)
Подробнее о первых поставках для разработчиков, исследователей, университетов в live-блоге Nvidia: https://blogs.nvidia.com/blog/live-dgx-spark-delivery/
@ai_machinelearning_big_data
#NVIDIA #JensenHuang #ElonMusk #SpaceX #AI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤96👍39🔥21😁5😴4🤔1