This media is not supported in your browser
VIEW IN TELEGRAM
🛩💨 Эффект Прандтля-Глоерта (паровой конус) — научно-популярное название конусовидного облака конденсата, возникающего вокруг объекта, движущегося на околозвуковых скоростях. Чаще всего наблюдается у самолётов. Назван в честь немецкого физика Людвига Прандтля и английского физика Германна Глоерта.
При достижении определённой скорости потока, обтекающего тело (крыло), соответствующей числу Маха, называемому критическим, местная скорость начинает превышать скорость звука. При этом возникает скачок уплотнения — нормальная ударная волна. Однако течения в пограничном слое в силу вязкости имеют существенно меньшую скорость. Возникает градиент скоростей, перпендикулярный поверхности, и как следствие, градиент давления. Этот градиент является неблагоприятным, приводящим к отрыву потока в основании ударной волны, и скачок уплотнения принимает лямбдовидную форму. Отрывное течение как бы оборачивается вокруг скачка, расширяется в зону за ударной волной. Этот процесс является местно адиабатическим, где занимаемый воздухом объём увеличивается, а его температура понижается. Если влажность воздуха достаточно велика, то температура воздуха может оказаться ниже точки росы. Тогда содержащийся в воздухе водяной пар конденсируется в виде мельчайших капелек, которые образуют небольшое облако. Поскольку отрывные течения за ударной волной направлены вдоль её фронта, передний край облака повторяет её форму, образуя конус.
Поскольку по мере удаления от фронта ударной волны температура снова становится равной температуре невозмущенного потока, конденсат испаряется. Поэтому складывается впечатление, что облако пара следует за летательным аппаратом.
При дальнейшем росте скорости фронт нормального скачка смещается по направлению потока, течения в пограничном слое становятся сверхзвуковыми и условия для конденсации исчезают. Поэтому паровой конус наблюдается лишь в узком диапазоне скоростей. #gif #физика #механика #видеоуроки #аэродинамика #термодинамика #МКТ #physics
💡 Physics.Math.Code // @physics_lib
При достижении определённой скорости потока, обтекающего тело (крыло), соответствующей числу Маха, называемому критическим, местная скорость начинает превышать скорость звука. При этом возникает скачок уплотнения — нормальная ударная волна. Однако течения в пограничном слое в силу вязкости имеют существенно меньшую скорость. Возникает градиент скоростей, перпендикулярный поверхности, и как следствие, градиент давления. Этот градиент является неблагоприятным, приводящим к отрыву потока в основании ударной волны, и скачок уплотнения принимает лямбдовидную форму. Отрывное течение как бы оборачивается вокруг скачка, расширяется в зону за ударной волной. Этот процесс является местно адиабатическим, где занимаемый воздухом объём увеличивается, а его температура понижается. Если влажность воздуха достаточно велика, то температура воздуха может оказаться ниже точки росы. Тогда содержащийся в воздухе водяной пар конденсируется в виде мельчайших капелек, которые образуют небольшое облако. Поскольку отрывные течения за ударной волной направлены вдоль её фронта, передний край облака повторяет её форму, образуя конус.
Поскольку по мере удаления от фронта ударной волны температура снова становится равной температуре невозмущенного потока, конденсат испаряется. Поэтому складывается впечатление, что облако пара следует за летательным аппаратом.
При дальнейшем росте скорости фронт нормального скачка смещается по направлению потока, течения в пограничном слое становятся сверхзвуковыми и условия для конденсации исчезают. Поэтому паровой конус наблюдается лишь в узком диапазоне скоростей. #gif #физика #механика #видеоуроки #аэродинамика #термодинамика #МКТ #physics
💡 Physics.Math.Code // @physics_lib
👍74❤19🔥13🤔2🤯2✍1⚡1
This media is not supported in your browser
VIEW IN TELEGRAM
В 1820 году Андре-Мари Ампер, вдохновлённый открытием Эрстеда (связь электричества и магнетизма), провёл серию фундаментальных экспериментов. В ходе них он установил количественные законы взаимодействия электрических токов.
Суть опыта: Два тонких параллельных проводника, по которым протекает электрический ток, способны механически взаимодействовать:
▪️ Токи, текущие в одном направлении, — притягиваются.
▪️Токи, текущие в противоположных направлениях, — отталкиваются.
Именно Ампер первым количественно исследовал и описал это явление, лежащее в основе определения единицы силы тока — Ампера в системе СИ. Малоизвестные факты:
1. Магнитное поле — относительный эффект. С точки зрения специальной теории относительности, сила притяжения между двумя параллельными токами одного направления может быть интерпретирована как следствие лоренцева сокращения длины. При движении положительных ионов в проводнике для движущихся электронов второго провода расстояние между ионами кажется меньшим, что приводит к возникновению эффективного избыточного положительного заряда и кулоновского притяжения.
2. Сила огромна в масштабах Вселенной. Закон Ампера является фундаментальным для астрофизики. Например, в солнечных вспышках и молниях токи достигают сотен тысяч ампер, и силы Ампера, стремясь их сжать (эффект «пинча»), играют ключевую роль в динамике плазмы.
3. Определение эталона. Один Ампер — это сила неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенным в вакууме на расстоянии 1 метр друг от друга, вызвал бы на каждом участке проводника длиной 1 метр силу взаимодействия, равную 2×10⁻⁷ ньютона.
⚡️ Задача для подписчиков: следует ли из данных опытов, что большие токи в дуговом разряде или молнии обладают самофокусировкой и уменьшают токовый канал? Если да, то как оценить предельную толщину канала молнии?
#электричество #физика #электродинамика #магнетизм #опыты #physics #эксперименты
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥22👍13❤5🤔4⚡3🤯2