Physics.Math.Code
143K subscribers
5.21K photos
2.1K videos
5.81K files
4.47K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

№ 6045941532

Обратная связь: @physicist_i
Download Telegram
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ Первые цветные кадры термоядерного синтеза: как это сняли? 🥺

Компания Tokamak Energy совершила небольшой, но очень важный прорыв в визуализации термоядерных процессов. Они впервые опубликовали цветное высокоскоростное видео работы своего сферического токамака ST40.

▪️ 1. Невероятная детализация: Камера снимала с частотой 16 000 кадров в секунду. Это позволяет разглядеть мельчайшие нестабильности и поведение плазменного шнура — то, что глазом или обычной камерой просто не увидеть.

▪️ 2. Цвет имеет значение: В отличие от черно-белых снимков, цвет помогает лучше анализировать распределение температуры и примесей в плазме.

▪️ 3. Данные, а не просто картинка: Эти кадры — не для красоты. Они критически важны для проверки и настройки компьютерных моделей, которые предсказывают поведение плазмы.

По сути, ученые получили «рентгеновское зрение» для своего реактора. Каждый такой кадр приближает нас к моменту, когда термоядерная энергия станет чистым и неиссякаемым источником энергии для человечества.

Watch one of our latest plasma pulses in our ST40 tokamak, filmed using a high-speed colour camera at an incredible 16,000 frames per second. Each pulse lasts around a fifth of a second. What you’re seeing is mostly visible light from the plasma’s edge, glowing pink. The core is simply too hot to emit visible light. In this footage, lithium is dropped into the plasma in the top right of the footage. As it interacts, it glows red when excited, then turns green as it becomes ionised, losing an electron. From there, it traces the magnetic field lines, revealing the plasma’s path around the tokamak. Lithium is the focus of our $52 million ST40 upgrade programme, in partnership with U.S. Department of Energy and the UK Department for Energy Security and Net Zero. This builds on pioneering work by Princeton Plasma Physics Laboratory and others that shows lithium can significantly improve plasma performance.

This video comes from ongoing research into X-point radiator (XPR) regimes, a promising operating mode for future fusion power plants that aims to cool the plasma before it reaches plasma-facing components (PFCs), helping to reduce wear without compromising performance. #физика #ядерная_физика #атомная_физика #электродинамика #магнетизм #плазма #physics #science #наука #квантовая_физика

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
2🔥8034👍148😍5🤔2🤯2❤‍🔥1
⚡️ Фигуры Лихтенберга — картины распределения искровых каналов, которые образуются на поверхности твёрдого диэлектрика при скользящем искровом разряде. Простым языком, это линии, похожие на молнии или ветви деревьев. Они появляются на многих естественных поверхностях, не пропускающих электричество — от древесины до кожи человека.

Фигуры Лихтенберга возникают на/в твёрдых телах, жидкостях и газах или внутри них во время электрического пробоя. Это природные явления, обладающие фрактальными свойствами. Фигуры Лихтенберга названы в честь немецкого физика Георга Кристофа Лихтенберга, который первым их открыл и изучил. Когда их впервые обнаружили, считалось, что их характерные формы могут помочь раскрыть природу положительных и отрицательных электрических «жидкостей».

В 1777 году Лихтенберг сконструировал большой электрофор для получения высокого напряжения статического электричества с помощью индукции. После разряда высоковольтной точки на поверхность изолятора он записал полученные радиальные узоры, посыпав поверхность различными порошкообразными материалами. Затем, прижав к этим узорам чистые листы бумаги, Лихтенберг смог перенести и записать эти изображения, тем самым открыв основной принцип современной ксерографии. Это открытие также стало предвестником современной науки физики плазмы. Хотя Лихтенберг изучал только двумерные (2D) фигуры, современные исследователи в области высоких напряжений изучают 2D и 3D фигуры (электрические деревья) на изолирующих материалах и внутри них.

Физика процесса: Почему ветвится?

1. Пробой и стримеры: Под действием высокого напряжения электроны с острия катода начинают «вырываться» и ускоряться. Они сталкиваются с молекулами воздуха и дерева, выбивая новые электроны. Возникает лавина — стример. Это слабосветящийся канал ионизированного газа.
2. Случайность и предопределённость: Куда побежит следующий стример? Это зависит от локальной напряжённости электрического поля. В древесине всегда есть микронеоднородности: разная плотность, влажность, следы смолы. В этих местах поле усиливается, и пробой происходит именно там.
3. Эффект «опережающей струи» (The Streamer Leader Effect): Основной канал не движется вслепую. От его кончика постоянно исходят микро-стримеры-разведчики. Тот из них, кто находит путь с наименьшим сопротивлением, становится главным направлением для всей мощи разряда. Так и рождается фрактальная, древовидная структура.

⚡️ Цвет рассказывает историю. Ярко-белые или голубоватые участки в центре ветвей — это углерод, выгоревший при сверхвысокой температуре. Более светлые, почти жёлтые края — это часто частицы металла от электродов, испарившиеся и перенесённые разрядом. По цвету можно грубо определить температуру в разных зонах разряда.

⚡️ Это не только на дереве. Первооткрыватель, Георг Кристоф Лихтенберг, в XVIII веке получал их на поверхности смолы или стекла, посыпанной порошком (серы или сурика). Электроны «застревали» в диэлектрике, создавая скрытое изображение, которое проявлялось порошком. По сути, это была первая в истории электрофотография — прабабушка ксерокса.

⚡️ L-образные фигуры и природа электричества. Лихтенберг экспериментировал с разными типами электричества: «положительным» (от смоляных палочек) и «отрицательным» (от стеклянных). Он обнаружил, что они дают разные узоры! Отрицательные (от катода) — более ветвистые и кружевные, а положительные (от анода) — более плотные, пятнистые, иногда в форме розетки. Это связано с разной подвижностью электронов и положительных ионов.

⚡️ Фигуры в теле. При ударе молнии или контакте с высоковольтной линией такие же фигуры могут на несколько часов или дней проявиться на коже человека. Это результат подкожного кровоизлияния по пути пробоя. Явление называется «кераунография» (от греч. «кераунос» — молния). Это не ожог, а жутковатый «автограф» электрического разряда, идущего по сосудам. #физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1811👍9🔥4❤‍🔥3😱3🤩1