Physics.Math.Code
143K subscribers
5.2K photos
2.06K videos
5.81K files
4.46K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

№ 6045941532

Обратная связь: @physicist_i
Download Telegram
Media is too big
VIEW IN TELEGRAM
🔥 Заводим мотор! Почему маленький ДВС для RC-машинки — это технологическое чудо?

Все мы видели мощные радиоуправляемые машинки с ДВС, которые ревут как настоящие звери. Казалось бы, возьми большой мотор, уменьши его — и готово. Но на деле создать такой «малютку» невероятно сложно. Вот почему ⬇️

▪️ Факт 1: В мире маленьких моторов трение — главный враг.

Представьте: при уменьшении размера мотора в 10 раз его объем (и мощность) уменьшаются в 1000 раз (!), а площадь поверхностей, создающих трение, — только в 100 раз. Это значит, что в относительном выражении трение в маленьком моторе в 10 раз значимее, чем в большом. Из-за этого крошечные двигатели без тщательной обработки могут просто не провернуться под нагрузкой.

▪️ Факт 2: Им не хватает инерции.

Массивный маховик большого мотора помогает поршню проходить «мертвые точки». В микро-ДВС маховик легкий, и ему не хватает инерции. Поэтому такие моторы невероятно сложно завести «с толкача» — нужна специальная система заводки (обычно роторная, с пружиной).

▪️ Факт 3: Скорость — их единственный путь к мощности.

Поскольку увеличить рабочий объем нельзя, инженеры выжимают мощность другим способом — оборотами. Типичный RC-ДВС легко раскручивается до 30 000–40 000 об/мин. Для сравнения, мотор спортивного автомобиля редко превышает 10 000 об/мин. Эта сумасшедшая скорость требует идеальной балансировки и создает чудовищные нагрузки на детали.

▪️ Факт 4: У них нет свечи зажигания (в привычном виде).

Во многих маленьких калильных двигателях нет электрической системы зажигания! Вместо нее в камере сгорания стоит калильная свеча — с платиновой нитью накаливания. Сначала ее разогревают от внешнего источника, а дальше она поддерживает температуру за счет циклов сгорания. Топливо воспламеняется от контакта с раскаленной свечой. Просто и гениально!

▪️ Факт 5: Термодинамика сходит с ума.

В маленьком объеме соотношение площади к объему растет. Камера сгорания быстро отдает тепло, что мешает эффективному сгоранию топлива. А из-за миниатюрных размеров сложно сделать эффективное охлаждение (обычно это просто алюминиевый радиатор, обдуваемый воздухом). Перегрев — постоянная головная боль.

🔥Вывод: Сделать маленький мощный ДВС — это не просто масштабировать чертеж. Это постоянная борьба с законами физики, которые не любят миниатюризацию. Каждый такой мотор — это шедевр инженерной мысли, где точность изготовления измеряется в микронах, а за мощность приходится платить умопомрачительными оборотами.

А вы знали о таких сложностях? #ДВС #радиоуправление #физика #механика #инженерия #RCмодели #технологии

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍89🔥29🤯1511❤‍🔥2🤩21😍1
This media is not supported in your browser
VIEW IN TELEGRAM
🎈 Резиновый шарик в тепловизоре 🔥

Что же происходит в резине, когда мы её растягиваем? В обычном состоянии цепочки полимера находятся в слегка изогнутом, свернутом состоянии. Это объясняется тем, что звенья и атомы не закреплены жёстко как на каком-то каркасе или проволоке – происходит их тепловое движение и конформация полимера, то есть его пространственная форма и положение цепочек непрерывно меняются. Более того, сами цепи способны соударяться друг о друга. Когда мы начинаем растягивать резину, цепочки начинают вытягиваться вдоль одной линии. А, значит, число соударений цепочек друг о друга увеличивается. Что приводит к росту скорости молекул и увеличению внутренней энергии – резина нагревается. Как только мы прекращаем растягивать резину, тепловое движение начинает стремиться вновь «запутать» цепочки, позволить им стать изогнутыми и сократить их длину. В результате резина сжимается. Такие «расслабленные» цепочки, с которых сняли приложенное напряжение, наоборот будут терять энергию: из-за этого резина будет охлаждаться.

Чтобы убедиться в этом, вы можете проделать опыт самостоятельно: вам нужно всего лишь приложить, например, резиновую ленту (подойдут даже канцелярские резинки) к губам в момент растяжения и затем отпустить её, позволив сжаться. Таким образом вы сможете почувствовать разницу в температуре растягиваемого участка.

💥 Зная молекулярный механизм, как работают резиновые ленты, можно пользоваться таким лайфхаком: нагретая резина может поднять больший груз! При большей температуре натянутые цепочки будут подвергаться более сильной бомбардировке соседних молекул, а значит, будут стремиться сильнее сжаться обратно. Поэтому в целом резиновую ленту будет сложнее растянуть и ее грузоподъемность увеличится! #физика #механика #видеоуроки #science #термодинамика #МКТ #physics #опыты #эксперименты

💡 Physics.Math.Code // @physics_lib
41👍26🔥19🤯5🌚4😱3🙈1
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 Сравнение скорости движения пули и скорости разрушения стекла

Когда разбивается стекло, трещина распространяется со скоростью 4828 км/ч. Такую скорость невозможно заметить обычным взглядом, только с помощью высокоскоростной съёмки. Стекло разбивается со скоростью несколько тысяч метров в секунду. Пуля, выпущенная из автомата, например, АК-47 или винтовки НАТО G3, имеет меньшую скорость – до тысячи метров в секунду. #видеоуроки #механика #разрушения #колебания #волны #физика #physics

📚 Механика разрушений [12 книг]

⛓️ ⚙️ Механика разрушения материалов (видео)

💡 Physics.Math.Code // @physics_lib
4👍61🔥2810🤯51
This media is not supported in your browser
VIEW IN TELEGRAM
Можно ли поставить дом на шары, чтобы спасти его от землетрясения? 🏠

Почему простые шары не сработают? Представьте дом на четырех бильярдных шарах. Проблемы:
→ Они могут выкатиться в сторону.
→ Давление в точке контакта огромно, и шар просто продавит пол.
→ Любой порыв ветра заставит дом качаться.

А что тогда сработает? Инженеры давно разработали системы, которые отделяют здание от вибраций при землетрясениях. Это как поставить дом на "амортизаторы".

1. Сейсмические изоляторы (Сейсмоизоляция):
Маятниковые изоляторы: Представьте не шар, а огромную "линзу", внутри которой стальной шар качается по специальной чаше. При землетрясении здание плавно "раскачивается" на этой чаше, как маятник, гася энергию.
Слинговые изоляторы: Здесь используются опорные конструкции, работающие на растяжение, которые позволяют зданию качаться в определенных пределах.
Рельсовые системы: Здание устанавливается на специальные рельсы, позволяя ему смещаться при подземных толчках.

2. Сейсмические гасители (Демпферы). Если изоляторы — это "подвеска", то демпферы — это "тормоза". Их ставят внутри здания, чтобы поглощать энергию колебаний. Бывают:
Вязкостные: Как гигантские амортизаторы в автомобиле.
Массовые (динамические гасители): Огромный шар или маятник на верхних этажах, который раскачивается в противофазе основным колебаниям и гасит их. Знаменитый Тайбэй 101 использует такой 660-тонный шар!

3. Сейсмические компенсаторы (Тросовые системы)
Системы стальных тросов и растяжек, которые перераспределяют нагрузку и не дают зданию сложиться, как карточный домик.

Идея "катящейся опоры" — гениальна в своей основе, и инженеры воплотили ее в жизнь, создав сложные и надежные системы сейсмической изоляции. Благодаря им современные здания в сейсмоопасных зонах могут пережить даже очень сильные толчки, сохранив жизни людей и свою целостность. #землетрясение #строительство #инженерия #технологии #геология #архитектура #механика #разрушения #колебания #волны #физика #physics #эксперименты

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍5420🔥19😱3❤‍🔥11🗿1