This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
🔥 Физический парадокс: Галлий — металл, который не верит в правила
Вы держали в руках металл, который плавится от тепла ладони? Нет, это не мистический металл из фэнтези, это самый что ни на есть реальный галлий. И его физические свойства способны удивить даже искушённый ум. Вот несколько фактов, которые заставят вас посмотреть на металлы по-новому:
▪️1. Металл-хамелеон: Твёрдый и жидкий одновременно
Галлий плавится при температуре всего 29.76 °C. Это значит, что в жаркий летний день он — лужица, а в прохладной комнате — твёрдый слиток. Положите кусочек в руку, и вы станете свидетелем фазового перехода прямо у себя на ладони! Это одно из немногих простых веществ с такой аномалией.
▪️2. Он ненавидит замерзать
Самое интересное начинается при застывании. В отличие от воды и почти всех других веществ, жидкий галлий имеет большую плотность, чем твёрдый. При затвердевании он расширяется примерно на 3.2%. Представьте: вы плавите его, а при остывании он не сжимается, а, наоборот, пытается «разбухнуть». Это уникальное свойство связано с особенностью его кристаллической решётки.
▪️3. Металл в «сверхтекучести»
Из-за очень сильного поверхностного натяжения в жидком состоянии галлий ведёт себя почти как ртуть — скатывается в шарики. Но есть фокус и поинтереснее: если его медленно охлаждать, можно получить переохлаждённый галлий. Он может оставаться жидким при температурах значительно ниже точки плавления (до -20 °C!), пока его не ткнуть — тогда он мгновенно кристаллизуется. Наглядный урок о метастабильных состояниях!
▪️4. Аномалия проводимости
Как и положено металлу, галлий проводит электрический ток. Но вот в чём загвоздка: в жидком состоянии его электропроводность примерно на 30% выше, чем в твёрдом! Обычно при плавлении проводимость падает из-за роста хаотичности. У галлия же при плавлении разрушается особая димерная структура, и электронам становится «проще» двигаться.
▪️5. «Ядовитое рукопожатие» для алюминия
Чисто физический, но очень эффектный феномен: жидкий галлий катастрофически разрушает кристаллическую решётку алюминия. Достаточно каплю галлия на алюминиевую ложку — и через несколько часов она станет хрупкой и рассыплется. Это не химическая реакция, а процесс межкристаллитной диффузии и разрушения межатомных связей. Наглядный пример того, как один материал может радикально изменить механические свойства другого.
Галлий — не просто игрушка. Без его соединений (арсенида галлия, нитрида галлия) не было бы ваших смартфонов, LED-ламп и высокочастотной микроэлектроники. Он — незаменимый солдат в арсенале материаловедения.
Вывод: Галлий ломает стереотипы о том, как должен вести себя «нормальный» металл. Он напоминает нам, что физика — это не скучный учебник, а мир полный удивительных аномалий и парадоксов. #физика #наука #металлы #химия #physics #эксперименты #технологии
💡 Physics.Math.Code // @physics_lib
Вы держали в руках металл, который плавится от тепла ладони? Нет, это не мистический металл из фэнтези, это самый что ни на есть реальный галлий. И его физические свойства способны удивить даже искушённый ум. Вот несколько фактов, которые заставят вас посмотреть на металлы по-новому:
▪️1. Металл-хамелеон: Твёрдый и жидкий одновременно
Галлий плавится при температуре всего 29.76 °C. Это значит, что в жаркий летний день он — лужица, а в прохладной комнате — твёрдый слиток. Положите кусочек в руку, и вы станете свидетелем фазового перехода прямо у себя на ладони! Это одно из немногих простых веществ с такой аномалией.
▪️2. Он ненавидит замерзать
Самое интересное начинается при застывании. В отличие от воды и почти всех других веществ, жидкий галлий имеет большую плотность, чем твёрдый. При затвердевании он расширяется примерно на 3.2%. Представьте: вы плавите его, а при остывании он не сжимается, а, наоборот, пытается «разбухнуть». Это уникальное свойство связано с особенностью его кристаллической решётки.
▪️3. Металл в «сверхтекучести»
Из-за очень сильного поверхностного натяжения в жидком состоянии галлий ведёт себя почти как ртуть — скатывается в шарики. Но есть фокус и поинтереснее: если его медленно охлаждать, можно получить переохлаждённый галлий. Он может оставаться жидким при температурах значительно ниже точки плавления (до -20 °C!), пока его не ткнуть — тогда он мгновенно кристаллизуется. Наглядный урок о метастабильных состояниях!
▪️4. Аномалия проводимости
Как и положено металлу, галлий проводит электрический ток. Но вот в чём загвоздка: в жидком состоянии его электропроводность примерно на 30% выше, чем в твёрдом! Обычно при плавлении проводимость падает из-за роста хаотичности. У галлия же при плавлении разрушается особая димерная структура, и электронам становится «проще» двигаться.
▪️5. «Ядовитое рукопожатие» для алюминия
Чисто физический, но очень эффектный феномен: жидкий галлий катастрофически разрушает кристаллическую решётку алюминия. Достаточно каплю галлия на алюминиевую ложку — и через несколько часов она станет хрупкой и рассыплется. Это не химическая реакция, а процесс межкристаллитной диффузии и разрушения межатомных связей. Наглядный пример того, как один материал может радикально изменить механические свойства другого.
Галлий — не просто игрушка. Без его соединений (арсенида галлия, нитрида галлия) не было бы ваших смартфонов, LED-ламп и высокочастотной микроэлектроники. Он — незаменимый солдат в арсенале материаловедения.
Вывод: Галлий ломает стереотипы о том, как должен вести себя «нормальный» металл. Он напоминает нам, что физика — это не скучный учебник, а мир полный удивительных аномалий и парадоксов. #физика #наука #металлы #химия #physics #эксперименты #технологии
💡 Physics.Math.Code // @physics_lib
❤114🔥77👍19✍17🆒6❤🔥3
This media is not supported in your browser
VIEW IN TELEGRAM
🌀 Различия в свойствах мягких припоев
Эти обозначения (# Tin или # Sn) не указывают напрямую на химический состав, а указывают на прочность на растяжение (tensile strength) припоя, выраженную в фунтах на квадратный дюйм (psi). Давайте разберем по порядку.
▪️ # в данном контексте означает "фунт" (pound). Цифра перед ним — это значение прочности на растяжение в тысячах фунтов на квадратный дюйм (ksi).
▪️ Примеры: 45# Sn означает припой с прочностью на растяжение 45 000 psi. или 99# Tin означает припой с прочностью на растяжение 99 000 psi.
Чем выше это число, тем прочнее соединение, полученное с помощью этого припоя.
▪️ Tin (англ.) или Sn (лат. Stannum) — это Олово. Указание "Tin" или "Sn" говорит о том, что этот припой содержит олово, но не говорит о его точном процентном содержании.
▪️ Эта система (ASTM B32) была распространена в США до того, как повсеместно стали использовать маркировку по химическому составу. Со временем для самых популярных марок сложились устойчивые соответствия.
➰ 30# Tin / Sn — Аналог ПОС-50 — Sn50Pb50 (50% олова, 50% свинца) — Радиомонтаж, общие работы. Низкая температура плавления.
➰ 45# Sn — Близок к ПОС-40 — Sn40Pb60 (40% олова, 60% свинца) — Более тугоплавкий, для неответственных соединений.
➰ 63# Sn — ПОС-63 (самый распространенный) — Sn63Pb37 (63% олова, 37% свинца) — Эвтектический припой. Идеален для электромонтажа: низкая Тпл, быстро переходит из жидкой в твердую фазу, мало склонен к образованию "холодных паек".
➰ 99# Tin — Sn95Sb5 (95% олова, 5% сурьмы) — Бессвинцовый припой. Высокая прочность, используется для пайки трубопроводов, радиаторов, в пищевой промышленности. Устойчив к ползучести и усталости.
Совет: Для современного электромонтажа (пайка электроники) золотым стандартом долгое время был 63# Sn (Sn63Pb37). Сейчас, с переходом на бессвинцовые технологии, чаще используются составы типа SAC305 (Sn96.5Ag3.0Cu0.5), которые маркируются уже по своему химическому составу. #факты #пайка #металлы #железо #химия #научные_фильмы #gif
🔥 В древние времена среди металлов наибольшим спросом пользовалась....
🔥 Сварка трением (фрикционная сварка)
✨ Как сделать сварочный аппарат из карандаша и лезвия
Какой флюс для пайки самый лучший на сегодняшний день?
🪙 Разбираемся в пайке: Советы по соотношению олова и свинца и их влиянию
🔥 10 флюсов для пайки: сравнение, тесты и какой реально стоит использовать мастеру
🔥 Сварка под слоем флюса
✨ Мартенсит
⛓️💥 Какие только технологии не применяли в СССР
⚡️ Большие токи в нескольких витках провода вызывают существенное магнитное поле.
💥 Лазерная сварка с разной формой луча
🔥 Spot-сварка
💥 Импульсная аргонодуговая сварка
💥 Электросварка и плавление электрода 💫
💡 Physics.Math.Code // @physics_lib
Эти обозначения (# Tin или # Sn) не указывают напрямую на химический состав, а указывают на прочность на растяжение (tensile strength) припоя, выраженную в фунтах на квадратный дюйм (psi). Давайте разберем по порядку.
▪️ # в данном контексте означает "фунт" (pound). Цифра перед ним — это значение прочности на растяжение в тысячах фунтов на квадратный дюйм (ksi).
▪️ Примеры: 45# Sn означает припой с прочностью на растяжение 45 000 psi. или 99# Tin означает припой с прочностью на растяжение 99 000 psi.
Чем выше это число, тем прочнее соединение, полученное с помощью этого припоя.
▪️ Tin (англ.) или Sn (лат. Stannum) — это Олово. Указание "Tin" или "Sn" говорит о том, что этот припой содержит олово, но не говорит о его точном процентном содержании.
▪️ Эта система (ASTM B32) была распространена в США до того, как повсеместно стали использовать маркировку по химическому составу. Со временем для самых популярных марок сложились устойчивые соответствия.
➰ 30# Tin / Sn — Аналог ПОС-50 — Sn50Pb50 (50% олова, 50% свинца) — Радиомонтаж, общие работы. Низкая температура плавления.
➰ 45# Sn — Близок к ПОС-40 — Sn40Pb60 (40% олова, 60% свинца) — Более тугоплавкий, для неответственных соединений.
➰ 63# Sn — ПОС-63 (самый распространенный) — Sn63Pb37 (63% олова, 37% свинца) — Эвтектический припой. Идеален для электромонтажа: низкая Тпл, быстро переходит из жидкой в твердую фазу, мало склонен к образованию "холодных паек".
➰ 99# Tin — Sn95Sb5 (95% олова, 5% сурьмы) — Бессвинцовый припой. Высокая прочность, используется для пайки трубопроводов, радиаторов, в пищевой промышленности. Устойчив к ползучести и усталости.
Совет: Для современного электромонтажа (пайка электроники) золотым стандартом долгое время был 63# Sn (Sn63Pb37). Сейчас, с переходом на бессвинцовые технологии, чаще используются составы типа SAC305 (Sn96.5Ag3.0Cu0.5), которые маркируются уже по своему химическому составу. #факты #пайка #металлы #железо #химия #научные_фильмы #gif
✨ Как сделать сварочный аппарат из карандаша и лезвия
Какой флюс для пайки самый лучший на сегодняшний день?
🪙 Разбираемся в пайке: Советы по соотношению олова и свинца и их влиянию
🔥 10 флюсов для пайки: сравнение, тесты и какой реально стоит использовать мастеру
✨ Мартенсит
⛓️💥 Какие только технологии не применяли в СССР
🔥 Spot-сварка
💥 Импульсная аргонодуговая сварка
💥 Электросварка и плавление электрода 💫
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥47👍31❤26✍4🤩2⚡1🙈1
This media is not supported in your browser
VIEW IN TELEGRAM
🧲 Диамагнитная беговая дорожка
Набор из пяти концентрических неодимовых магнитов, чередующихся N-S-N-S-N, образует беговую дорожку и формирует поле захвата, над которой парят тонкие слои пиролитического графита.
Пиролитический графит (иногда пирографит) — форма графита. Он обычно используется как инструмент калибровки для микроскопических исследований, таких как сканирующая туннельная микроскопия или атомно-силовая микроскопия. Пиролитический графит получают нагреванием смеси кокса и пека до 2800 °C; из газообразных углеводородов при температуре 1400—1500 °C в вакууме с последующим нагреванием образовавшегося пироуглерода до температуры 2500—3000 °C при давлении 50 МПа (образовавшийся продукт — пирографит). Пиролитический графит или пирографит — один из самых интересных видов углерода. Он является отличным диамагнетиком (веществом, намагничивающимся против направления внешнего магнитного поля). Его плотность составляет 2200 кг/м³. #физика #факты #химия #опыты #магнетизм #physics #диамагнетики
💡 Physics.Math.Code // @physics_lib
Набор из пяти концентрических неодимовых магнитов, чередующихся N-S-N-S-N, образует беговую дорожку и формирует поле захвата, над которой парят тонкие слои пиролитического графита.
Пиролитический графит (иногда пирографит) — форма графита. Он обычно используется как инструмент калибровки для микроскопических исследований, таких как сканирующая туннельная микроскопия или атомно-силовая микроскопия. Пиролитический графит получают нагреванием смеси кокса и пека до 2800 °C; из газообразных углеводородов при температуре 1400—1500 °C в вакууме с последующим нагреванием образовавшегося пироуглерода до температуры 2500—3000 °C при давлении 50 МПа (образовавшийся продукт — пирографит). Пиролитический графит или пирографит — один из самых интересных видов углерода. Он является отличным диамагнетиком (веществом, намагничивающимся против направления внешнего магнитного поля). Его плотность составляет 2200 кг/м³. #физика #факты #химия #опыты #магнетизм #physics #диамагнетики
💡 Physics.Math.Code // @physics_lib
👍61❤18🔥13⚡1😍1