Media is too big
VIEW IN TELEGRAM
▪️ Сложение колебаний динамика и прямолинейного потока вода, в результате которого получается бегущая волна около синусоидальной формы. Однако волна в некоторые моменты времени как будто замирает в воздухе. Связано это со стробоскопическим эффектом: частота камеры иногда точно совпадает с частотой колебаний динамика, в результате подвижная струя кажется неподвижной. Стробоскопический эффект при съёмке заключается в иллюзии неподвижности быстро движущихся тел.
▪️Неодимовый магнит может использоваться для сбора железной стружки благодаря высокой силе притяжения, которая характерна для этого типа магнитов. Стружка, особенно железосодержащая, притягивается к магниту, что позволяет улавливать её в разных областях. Магнит притягивает ферромагнитные частицы (железо, сталь). Цветные металлы и неметаллические загрязнения остаются незамеченными. Для очистки моторного масла от мелкой металлической стружки, которая образуется из-за трения деталей двигателя. Магнит размещают снаружи корпуса масляного фильтра, в области прохождения масла. Стружка притягивается и удерживается, предотвращая её дальнейшее циркулирование по системе.
▪️Уменьшение объема тела тесно связано с уменьшением его момента инерции J = (2/5) × m × r² (для сферы). Закон сохранения момента импульса гласит, что если момент внешних сил, действующих на механическую систему относительно центра оси, равен нулю, то момент импульса системы относительно этого центра с течением времени не изменяется. Если момент импульса L = J ×ω сохраняется, то при уменьшении момента инерции J (сжатие проволочного каркаса), частота вращения будет увеличиваться.
▪️ Рёбра жёсткости (складки) способны сделать бумагу твёрдой — они придают листу прочность, который не выдерживает в форме ровного прямого листа. Это происходит, если лист сложить так, чтобы получились рёбра жёсткости. Например: Сложить лист «гармошкой» — создаёт большое количество рёбер жёсткости. Рёбра жёсткости направляют деформацию «по сложному» пути. Например, если лист согнули под углом 90 градусов, напряжения, которые возникают в материале, распространяются не в продольной плоскости, а в поперечной. В этой плоскости согнуть лист сложнее, так как нужно разорвать межмолекулярные связи.
▪️Гироскопический эффект и прецессия — понятия, связанные с поведением вращающихся объектов, в частности гироскопов. Эти термины объясняют, как ось вращения гироскопа сохраняет направление в пространстве, а при внешнем воздействии ось не меняет направление сразу, а начинает плавно описывать движение. Гироскопический эффект — это способность быстро вращающегося тела удерживать своё положение в пространстве в плоскости своего вращения. Прецессия — это движение оси вращения гироскопа вокруг другой оси. Сила тяжести действует на гироскоп, создавая момент силы, который пытается заставить его опрокинуться. Однако гироскоп прецессирует, и ось его вращения остаётся направленной вверх. Если ось быстро вращающегося гироскопа слегка отклонить от вертикали, то она начнёт прецессировать вокруг вертикального положения, то есть совершать вращательное движение по поверхности конуса.
▪️Когда один шар сталкивается с цепочкой из нескольких одинаковых шаров, налетающий шар обменивается скоростью со вторым шаром, второй — с третьим и так далее. В результате все шары, кроме последнего, будут находиться в покое, а последний шар отскочит ровно с той же самой скоростью, с которой двигался налетающий шар. Это происходит благодаря закону сохранения импульса, согласно которому суммарный импульс системы тел до взаимодействия равен суммарному импульсу этой системы тел после взаимодействия.
#физика #physics #science #видеоуроки #наука #опыты #эксперименты #механика
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍60🔥20❤16🤯1🤩1🗿1👾1
Media is too big
VIEW IN TELEGRAM
Видеоэкран с трёхмерной мышью из фототранзистора и двухцветных китайских матриц под управлением микроконтроллера ATmega-644 на собственной многозадачной операционной системе. Сделано на предельно дешёвой элементной базе, вся схема разведена в двух слоях.
Многооконный интерфейс с предзагруженными демо-приложениями: скрин-сейвер, графическая рисовалка, видеролики с альфа-каналом, интерактивное моделирование в реальном времени пламени на основе температурной модели горения и воды методом клеточного автомата.
Сайт автора: http://velect.ru/
Статья о реализованной в проекте многозадачности: http://www.velect.ru/articles.html
#техника #конструктор #ARM #ATmega644 #программирование #механика #разработка #микроконтроллеры
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
3👍118🔥64❤18🤯15🗿13⚡4🙈3😱2🤩2😍2🌚2
Media is too big
VIEW IN TELEGRAM
Из конструктора LEGO Technic можно собирать механические подвески — узлы, которые входят в состав моделей автомобилей, мотоциклов и других транспортных средств. Некоторые наборы LEGO Technic, в которых есть подвески:
▪️MOC-159983 — Axle with Steering, Drive, Suspension for 1:10 wheels (2023) — набор с подвеской для колёс 1:10.
▪️MOC-152716 — Simple Front Suspension (2023) — набор с простой передней подвеской.
▪️MOC-132045 — Front Race Car Suspension (2022) — набор с подвеской для передней оси гоночного автомобиля.
▪️MOC-128195 — Torsen differential mounted on a double wishbone suspension (2022) — набор с дифференциалом Торсена, установленным на подвеску с двойными поперечными рычагами.
⚙️ Редуктор из LEGO с огромным передаточным числом
⚙️ Моделирование решения задачи передвижения автомобилей по песчаному грунту с помощью конструктора LEGO
⛔️ 7 препятствий и 5 LEGO-роботов, которые умеют шагать
⚙️ LEGO® Technic Строительство мостов: Задача на 100 кг!
🎻 Когда Lego играет на гитаре лучше, чем ты...
⚙️ Lego MindStorm
👾 Что будет, если надолго оставить инженера с конструктором Lego
#техника #конструктор #ARM #программирование #механика #разработка #микроконтроллеры
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍44❤16🔥10❤🔥7😍2🤩1
Media is too big
VIEW IN TELEGRAM
🔨Уникальным инженерным соревнованием в Чили, ориентированным на прочность конструкций, является испытание на удар, в ходе которого участники проектируют и строят конструкции для защиты хрупких предметов, таких как яйцо, от увеличивающихся по силе ударов, связанных с падением груза (молота).
Цель: Создать конструкцию, защищающую хрупкий предмет (например, яйцо) от падения груза.
Как это работает: Вес падает на конструкцию с постепенно увеличивающейся высоты, и цель состоит в том, чтобы выдержать наибольшее количество ударов, прежде чем она разрушится.
Считаете ли вы, что именно такими, ориентированными на практику, должны быть лабораторные работы у студентов физ-мата и архитектурного направлений?
🪨 Является ли данная конструкция прочной и устойчивой при нагрузке сверху с точки зрения физики?
🏛 Отличная иллюстрация явления резонанса
⚙️ Забытые технологии. Как возводили мосты в средневековье
🪵 Арочный каменный мост за 19 дней
⏳ Выравнивания опор Эйфелевой башни
📙 Почему мы не проваливаемся сквозь пол [1971] Гордон Джеймс Эдвард
📘 Конструкции, или почему не ломаются вещи [1980] Гордон Джеймс Эдвард
#physics #science #сопротивление_материалов #механика #физика #архитектура
💡 Physics.Math.Code // @physics_lib
Цель: Создать конструкцию, защищающую хрупкий предмет (например, яйцо) от падения груза.
Как это работает: Вес падает на конструкцию с постепенно увеличивающейся высоты, и цель состоит в том, чтобы выдержать наибольшее количество ударов, прежде чем она разрушится.
Считаете ли вы, что именно такими, ориентированными на практику, должны быть лабораторные работы у студентов физ-мата и архитектурного направлений?
🪨 Является ли данная конструкция прочной и устойчивой при нагрузке сверху с точки зрения физики?
🏛 Отличная иллюстрация явления резонанса
⚙️ Забытые технологии. Как возводили мосты в средневековье
🪵 Арочный каменный мост за 19 дней
⏳ Выравнивания опор Эйфелевой башни
📙 Почему мы не проваливаемся сквозь пол [1971] Гордон Джеймс Эдвард
📘 Конструкции, или почему не ломаются вещи [1980] Гордон Джеймс Эдвард
#physics #science #сопротивление_материалов #механика #физика #архитектура
💡 Physics.Math.Code // @physics_lib
👍114🔥44❤21🤔4❤🔥2✍1💯1
This media is not supported in your browser
VIEW IN TELEGRAM
🔨 Резонанс камертонов
Звуковой резонанс — это резонанс, вызванный звуковыми волнами. Это явление, при котором акустические системы усиливают звуковые волны. При этом частота этих волн совпадает с резонансной частотой системы. Акустический тип резонирования имеет основную резонансную частоту, которая зависит от длины, массы и силы натяжения струн.
Самым простым примером для понимания звукового резонанса является наблюдение за взаимодействием двух камертонов:
▪️ Подготовьте два камертона с совпадающими собственными частотами и поставьте их рядом, повернув их друг к другу отверстиями.
▪️ Удар резиновым молотком по одному из камертонов приводит его в колебание. Если затем приглушить его, соседний камертон издаст звук, отзывающийся на колебания первого.
Это феномен является следствием того, что волны, образованные первым камертоном, доходят до второго, возбуждая в нем вынужденные колебания. В итоге одинаковая частота камертонов приводит к резонансу.
Акустический резонанс — важный фактор, который учитывается музыкальными мастерами при создании инструментов. Звуковая волна ударяет по объекту с частотой, соответствующей резонансной части инструмента, что приводит к резонансу. В струнных инструментах резонаторами выступают деки, усиливающие звуки, которые издают струны. Звучание и тембр зависят не только он формы резонатора, но и от качества и вида древесины и даже состава лака, которым покрывают готовый инструмент. #gif #механика #физика #physics #опыты #резонанс
💡 Physics.Math.Code // @physics_lib
Звуковой резонанс — это резонанс, вызванный звуковыми волнами. Это явление, при котором акустические системы усиливают звуковые волны. При этом частота этих волн совпадает с резонансной частотой системы. Акустический тип резонирования имеет основную резонансную частоту, которая зависит от длины, массы и силы натяжения струн.
Самым простым примером для понимания звукового резонанса является наблюдение за взаимодействием двух камертонов:
▪️ Подготовьте два камертона с совпадающими собственными частотами и поставьте их рядом, повернув их друг к другу отверстиями.
▪️ Удар резиновым молотком по одному из камертонов приводит его в колебание. Если затем приглушить его, соседний камертон издаст звук, отзывающийся на колебания первого.
Это феномен является следствием того, что волны, образованные первым камертоном, доходят до второго, возбуждая в нем вынужденные колебания. В итоге одинаковая частота камертонов приводит к резонансу.
Акустический резонанс — важный фактор, который учитывается музыкальными мастерами при создании инструментов. Звуковая волна ударяет по объекту с частотой, соответствующей резонансной части инструмента, что приводит к резонансу. В струнных инструментах резонаторами выступают деки, усиливающие звуки, которые издают струны. Звучание и тембр зависят не только он формы резонатора, но и от качества и вида древесины и даже состава лака, которым покрывают готовый инструмент. #gif #механика #физика #physics #опыты #резонанс
💡 Physics.Math.Code // @physics_lib
👍36❤23🔥16🤩3
Media is too big
VIEW IN TELEGRAM
➰ Гармонограф (Harmonograph) — это механическое устройство, которое использует маятники для создания геометрического изображения. Создаваемые чертежи обычно представляют собой кривые Лиссажу или связанные с ними чертежи большей сложности. Устройства, которые начали появляться в середине 19 века и достигли пика популярности в 1890-х годах, нельзя однозначно отнести к одному человеку, хотя Хью Блэкберн, профессор математики в Университете Глазго, обычно считается официальным изобретателем.
Простой, так называемый "боковой" гармонограф использует два маятника для управления движением пера относительно поверхности для рисования. Один маятник перемещает перо взад и вперед вдоль одной оси, а другой маятник перемещает поверхность для рисования взад и вперед вдоль перпендикулярной оси. Изменяя частоту и фазу маятников относительно друг друга, создаются различные узоры. Даже простой гармонограф, как описано, может создавать эллипсы, спирали, восьмерки и другие фигуры Лиссажу.
Более сложные гармонографы включают в себя три или более маятников или соединенных маятников вместе (например, подвешивание одного маятника к другому), или включают вращательное движение, при котором один или несколько маятников установлены на подвесках для обеспечения движения в любом направлении. #gif #physics #физика #механика #колебания
💡 Physics.Math.Code // @physics_lib
Простой, так называемый "боковой" гармонограф использует два маятника для управления движением пера относительно поверхности для рисования. Один маятник перемещает перо взад и вперед вдоль одной оси, а другой маятник перемещает поверхность для рисования взад и вперед вдоль перпендикулярной оси. Изменяя частоту и фазу маятников относительно друг друга, создаются различные узоры. Даже простой гармонограф, как описано, может создавать эллипсы, спирали, восьмерки и другие фигуры Лиссажу.
Более сложные гармонографы включают в себя три или более маятников или соединенных маятников вместе (например, подвешивание одного маятника к другому), или включают вращательное движение, при котором один или несколько маятников установлены на подвесках для обеспечения движения в любом направлении. #gif #physics #физика #механика #колебания
💡 Physics.Math.Code // @physics_lib
👍53❤17🔥10✍1🤩1
Media is too big
VIEW IN TELEGRAM
🌊 Не просто камни: как инженеры укрощают морскую ярость
Знакомьтесь: это не просто груда булыжников, а высокотехнологичное средство спасения целых городов! Речь о берегозащитных сооружениях — титанических инженерных проектах, которые спасают наши пляжи, набережные и дома от разрушительной силы волн.
Но как обычные камни могут противостоять мощи океана? Здесь на помощь приходит физика!
🧱 Главные герои защиты:
1. Волноломы (Брекватеры) — Эти гигантские стены уходят далеко в море. Их задача — принять на себя первый и самый сильный удар волны, разбить ее и отнять энергию до того, как она дойдет до берега.
Физика в деле: Здесь работает дифракция — волны огибают препятствие и теряют свою силу. Часть энергии гасится за счет турбулентности и трения о rough (шероховатую) поверхность сооружения.
2. Буны — это перпендикулярные берегу «пальцы», которые вы часто видите на пляжах. Они не столько останавливают волны, сколько управляют движением песка.
Физика в деле: Буны используют силу литорального (вдольберегового) течения. Они ловят песок, который течет вдоль берега, не давая ему уплывать, и таким образом естественным образом наращивают пляж.
3. Габионы — сетки, заполненные камнями. Они кажутся простыми, но гениальны: гибкие, прочные и отлично пропускают воду, снижая давление волны.
Физика в деле: Принцип диссипации энергии: энергия волны не отражается, а поглощается, тратится на трение между тысячами камней внутри габиона.
🧠 Интересные факты:
▪️ Древние римляне были мастерами гидротехники. Порт в Кесарии (Израиль), построенный Иродом Великим, использовал сложную систему волноломов из подводного бетона, который затвердевал в воде!
▪️ Голландия — мировой лидер в борьбе с морем. Их проект «Дельтаверкен» — одно из семи современных чудес света инженерной мысли. Они не просто защищаются, а отвоевывают у моря землю!
▪️ Эффект «гавани»: Иногда волноломы, призванные защищать, могут усилить проблему. Если построить их неправильно, они могут создать резонансные колебания внутри гавани (сейши), которые раскачивают и бьют по пришвартованным лодкам сильнее, чем сами волны с моря.
⚖️ Экология vs Инженерия
▪️ Раньше просто заливали бетоном всё. Сейчас тренд — «мягкая» защита:
▪️ Песчаная подпитка — просто завозят новый песок. Дорого, но экологично.
▪️ Создание искусственных рифов — которые гасят волны так же, как и натуральные.
▪️ Восстановление дюн и мангровых зарослей — лучший защитник берега — сама природа.
Сила волны колоссальна. Но человеческий гений, подкрепленный знанием законов физики, позволяет нам не просто противостоять этой силе, а грамотно ею управлять.
А вы видели подобные сооружения вживую? Делитесь фото в комментариях! 📸 #гидродинамика #сопромат #физика #механика #наука #science #math #physics
💡 Physics.Math.Code // @physics_lib
Знакомьтесь: это не просто груда булыжников, а высокотехнологичное средство спасения целых городов! Речь о берегозащитных сооружениях — титанических инженерных проектах, которые спасают наши пляжи, набережные и дома от разрушительной силы волн.
Но как обычные камни могут противостоять мощи океана? Здесь на помощь приходит физика!
🧱 Главные герои защиты:
1. Волноломы (Брекватеры) — Эти гигантские стены уходят далеко в море. Их задача — принять на себя первый и самый сильный удар волны, разбить ее и отнять энергию до того, как она дойдет до берега.
Физика в деле: Здесь работает дифракция — волны огибают препятствие и теряют свою силу. Часть энергии гасится за счет турбулентности и трения о rough (шероховатую) поверхность сооружения.
2. Буны — это перпендикулярные берегу «пальцы», которые вы часто видите на пляжах. Они не столько останавливают волны, сколько управляют движением песка.
Физика в деле: Буны используют силу литорального (вдольберегового) течения. Они ловят песок, который течет вдоль берега, не давая ему уплывать, и таким образом естественным образом наращивают пляж.
3. Габионы — сетки, заполненные камнями. Они кажутся простыми, но гениальны: гибкие, прочные и отлично пропускают воду, снижая давление волны.
Физика в деле: Принцип диссипации энергии: энергия волны не отражается, а поглощается, тратится на трение между тысячами камней внутри габиона.
🧠 Интересные факты:
▪️ Древние римляне были мастерами гидротехники. Порт в Кесарии (Израиль), построенный Иродом Великим, использовал сложную систему волноломов из подводного бетона, который затвердевал в воде!
▪️ Голландия — мировой лидер в борьбе с морем. Их проект «Дельтаверкен» — одно из семи современных чудес света инженерной мысли. Они не просто защищаются, а отвоевывают у моря землю!
▪️ Эффект «гавани»: Иногда волноломы, призванные защищать, могут усилить проблему. Если построить их неправильно, они могут создать резонансные колебания внутри гавани (сейши), которые раскачивают и бьют по пришвартованным лодкам сильнее, чем сами волны с моря.
⚖️ Экология vs Инженерия
▪️ Раньше просто заливали бетоном всё. Сейчас тренд — «мягкая» защита:
▪️ Песчаная подпитка — просто завозят новый песок. Дорого, но экологично.
▪️ Создание искусственных рифов — которые гасят волны так же, как и натуральные.
▪️ Восстановление дюн и мангровых зарослей — лучший защитник берега — сама природа.
Сила волны колоссальна. Но человеческий гений, подкрепленный знанием законов физики, позволяет нам не просто противостоять этой силе, а грамотно ею управлять.
А вы видели подобные сооружения вживую? Делитесь фото в комментариях! 📸 #гидродинамика #сопромат #физика #механика #наука #science #math #physics
💡 Physics.Math.Code // @physics_lib
1❤80👍61🔥23🤔3❤🔥2✍1👏1
Космический садовник для полива своей оранжереи использует цилиндрический бак высотой H = 20 м, заполненный водой. Чтобы создать искусственную гравитацию, бак вращается вокруг своей вертикальной оси с постоянной угловой скоростью ω = 2 рад/с.
В боковой стенке бака у его дна, на расстоянии R₀ = 1 м от оси вращения, проделано малое цилиндрическое отверстие, ось которого горизонтальна. Считайте, что уровень воды в баке поддерживается постоянным, и глубина воды над отверстием равна H (т.е. свободная поверхность находится на высоте H над отверстием). Течение — стационарное, жидкость — идеальная и несжимаемая. Давление на свободной поверхности атмосферное.
Вопрос: Найдите уравнение траектории (форму) струи, вытекающей из отверстия, в системе отсчета, связанной с вращающимся баком. Проигнорируйте сопротивление воздуха и считайте, что струя находится в вакууме.
#задачи #физика #разбор_задач #physics #механика #гидравлика #гидродинамика #science
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍31🤯20❤14🔥4🤔4✍2😱2
This media is not supported in your browser
VIEW IN TELEGRAM
🛩 Аэродинамика крыла: почему самолёт падает, когда «задирает нос»?
Сегодня разберём одно из ключевых понятий в авиации — сваливание самолёта (или «штопор» в народе). Звучит пугающе, но на самом деле это чистая физика, которую пилоты хорошо знают и умеют предотвращать.
✈️ Сначала — магия подъёмной силы
Чтобы понять сваливание, нужно знать, как крыло создаёт подъёмную силу. Всё дело в форме крыла и угле атаки.
▪️ Форма крыла: Профиль крыла сделан так, что воздух сверху обтекает его быстрее, чем снизу. Согласно закону Бернулли, быстро движущийся воздух создаёт более низкое давление. Разница в давлении снизу и сверху и создаёт подъёмную силу.
▪️ Угол атаки: Это угол между хордой крыла (условной прямой от носка к задней кромке) и набегающим потоком воздуха. Чем больше угол атаки — тем больше подъёмная сила (но только до определённого предела!).
Представьте, что вы высовываете руку из окна движущейся машины: если вы слегка наклоните ладонь носом вверх, её будет поднимать. Чем сильнее наклоните — тем сильнее подъём. Это и есть увеличение угла атаки.
А что же такое сваливание? Вот мы и подошли к главному. Сваливание — это не отказ двигателей! Это аэродинамическая потеря подъёмной силы.
Что происходит при слишком большом угле атаки?
1. «Срыв потока»: Воздушный поток перестаёт плавно обтекать верхнюю поверхность крыла. Он становится турбулентным и отрывается от крыла.
2. Резкая потеря подъёмной силы: Начинается с задней кромки крыла и быстро движется вперёд. Крыло вместо того, чтобы «держать» в воздухе, превращается в кусок металла, создающий огромное сопротивление.
3. Падение: Самолёт перестаёт лететь и начинает «падать камнем», заваливаясь на нос или на крыло.
Ключевой момент: Сваливание может произойти на любой скорости и в любой конфигурации (с убранными или выпущенными шасси/закрылками). Главное — достигнуть критического угла атаки.
Как пилоты выводят самолёт из сваливания? Алгоритм прост и отработан до автоматизма:
1. «Нос — вниз!»: Первое и самое важное действие — уменьшить угол атаки. Пилот плавно отдаёт штурвал от себя, чтобы набегающий поток воздуха снова «прилип» к крылу.
2. Добавить тяги: Увеличить мощность двигателей для набора скорости.
Ни в коем случае нельзя тянуть штурвал на себя — это только усугубит сваливание!
Сваливание — это не мистика, а фундаментальный аэродинамический процесс. Современные самолёты оснащены системами предупреждения (трясётся штурвал, срабатывает сирена), которые предупреждают пилота задолго до критического момента. Именно поэтому полёты являются самым безопасным видом транспорта.
P.S. Интересный факт: птицы инстинктивно управляют углом атаки своих крыльев при посадке, чтобы не допустить сваливания! #авиация #аэродинамика #механика #физика #physics #science #наука
💡 Physics.Math.Code // @physics_lib
Сегодня разберём одно из ключевых понятий в авиации — сваливание самолёта (или «штопор» в народе). Звучит пугающе, но на самом деле это чистая физика, которую пилоты хорошо знают и умеют предотвращать.
Чтобы понять сваливание, нужно знать, как крыло создаёт подъёмную силу. Всё дело в форме крыла и угле атаки.
▪️ Форма крыла: Профиль крыла сделан так, что воздух сверху обтекает его быстрее, чем снизу. Согласно закону Бернулли, быстро движущийся воздух создаёт более низкое давление. Разница в давлении снизу и сверху и создаёт подъёмную силу.
▪️ Угол атаки: Это угол между хордой крыла (условной прямой от носка к задней кромке) и набегающим потоком воздуха. Чем больше угол атаки — тем больше подъёмная сила (но только до определённого предела!).
Представьте, что вы высовываете руку из окна движущейся машины: если вы слегка наклоните ладонь носом вверх, её будет поднимать. Чем сильнее наклоните — тем сильнее подъём. Это и есть увеличение угла атаки.
А что же такое сваливание? Вот мы и подошли к главному. Сваливание — это не отказ двигателей! Это аэродинамическая потеря подъёмной силы.
Что происходит при слишком большом угле атаки?
1. «Срыв потока»: Воздушный поток перестаёт плавно обтекать верхнюю поверхность крыла. Он становится турбулентным и отрывается от крыла.
2. Резкая потеря подъёмной силы: Начинается с задней кромки крыла и быстро движется вперёд. Крыло вместо того, чтобы «держать» в воздухе, превращается в кусок металла, создающий огромное сопротивление.
3. Падение: Самолёт перестаёт лететь и начинает «падать камнем», заваливаясь на нос или на крыло.
Ключевой момент: Сваливание может произойти на любой скорости и в любой конфигурации (с убранными или выпущенными шасси/закрылками). Главное — достигнуть критического угла атаки.
Как пилоты выводят самолёт из сваливания? Алгоритм прост и отработан до автоматизма:
1. «Нос — вниз!»: Первое и самое важное действие — уменьшить угол атаки. Пилот плавно отдаёт штурвал от себя, чтобы набегающий поток воздуха снова «прилип» к крылу.
2. Добавить тяги: Увеличить мощность двигателей для набора скорости.
Ни в коем случае нельзя тянуть штурвал на себя — это только усугубит сваливание!
Сваливание — это не мистика, а фундаментальный аэродинамический процесс. Современные самолёты оснащены системами предупреждения (трясётся штурвал, срабатывает сирена), которые предупреждают пилота задолго до критического момента. Именно поэтому полёты являются самым безопасным видом транспорта.
P.S. Интересный факт: птицы инстинктивно управляют углом атаки своих крыльев при посадке, чтобы не допустить сваливания! #авиация #аэродинамика #механика #физика #physics #science #наука
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
3🔥112❤51👍28✍8⚡2😱2
Media is too big
VIEW IN TELEGRAM
Все мы видели мощные радиоуправляемые машинки с ДВС, которые ревут как настоящие звери. Казалось бы, возьми большой мотор, уменьши его — и готово. Но на деле создать такой «малютку» невероятно сложно. Вот почему ⬇️
▪️ Факт 1: В мире маленьких моторов трение — главный враг.
Представьте: при уменьшении размера мотора в 10 раз его объем (и мощность) уменьшаются в 1000 раз (!), а площадь поверхностей, создающих трение, — только в 100 раз. Это значит, что в относительном выражении трение в маленьком моторе в 10 раз значимее, чем в большом. Из-за этого крошечные двигатели без тщательной обработки могут просто не провернуться под нагрузкой.
▪️ Факт 2: Им не хватает инерции.
Массивный маховик большого мотора помогает поршню проходить «мертвые точки». В микро-ДВС маховик легкий, и ему не хватает инерции. Поэтому такие моторы невероятно сложно завести «с толкача» — нужна специальная система заводки (обычно роторная, с пружиной).
▪️ Факт 3: Скорость — их единственный путь к мощности.
Поскольку увеличить рабочий объем нельзя, инженеры выжимают мощность другим способом — оборотами. Типичный RC-ДВС легко раскручивается до 30 000–40 000 об/мин. Для сравнения, мотор спортивного автомобиля редко превышает 10 000 об/мин. Эта сумасшедшая скорость требует идеальной балансировки и создает чудовищные нагрузки на детали.
▪️ Факт 4: У них нет свечи зажигания (в привычном виде).
Во многих маленьких калильных двигателях нет электрической системы зажигания! Вместо нее в камере сгорания стоит калильная свеча — с платиновой нитью накаливания. Сначала ее разогревают от внешнего источника, а дальше она поддерживает температуру за счет циклов сгорания. Топливо воспламеняется от контакта с раскаленной свечой. Просто и гениально!
▪️ Факт 5: Термодинамика сходит с ума.
В маленьком объеме соотношение площади к объему растет. Камера сгорания быстро отдает тепло, что мешает эффективному сгоранию топлива. А из-за миниатюрных размеров сложно сделать эффективное охлаждение (обычно это просто алюминиевый радиатор, обдуваемый воздухом). Перегрев — постоянная головная боль.
А вы знали о таких сложностях? #ДВС #радиоуправление #физика #механика #инженерия #RCмодели #технологии
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍89🔥29🤯14❤11❤🔥2🤩2⚡1😍1
This media is not supported in your browser
VIEW IN TELEGRAM
🎈 Резиновый шарик в тепловизоре 🔥
Что же происходит в резине, когда мы её растягиваем? В обычном состоянии цепочки полимера находятся в слегка изогнутом, свернутом состоянии. Это объясняется тем, что звенья и атомы не закреплены жёстко как на каком-то каркасе или проволоке – происходит их тепловое движение и конформация полимера, то есть его пространственная форма и положение цепочек непрерывно меняются. Более того, сами цепи способны соударяться друг о друга. Когда мы начинаем растягивать резину, цепочки начинают вытягиваться вдоль одной линии. А, значит, число соударений цепочек друг о друга увеличивается. Что приводит к росту скорости молекул и увеличению внутренней энергии – резина нагревается. Как только мы прекращаем растягивать резину, тепловое движение начинает стремиться вновь «запутать» цепочки, позволить им стать изогнутыми и сократить их длину. В результате резина сжимается. Такие «расслабленные» цепочки, с которых сняли приложенное напряжение, наоборот будут терять энергию: из-за этого резина будет охлаждаться.
Чтобы убедиться в этом, вы можете проделать опыт самостоятельно: вам нужно всего лишь приложить, например, резиновую ленту (подойдут даже канцелярские резинки) к губам в момент растяжения и затем отпустить её, позволив сжаться. Таким образом вы сможете почувствовать разницу в температуре растягиваемого участка.
💥 Зная молекулярный механизм, как работают резиновые ленты, можно пользоваться таким лайфхаком: нагретая резина может поднять больший груз! При большей температуре натянутые цепочки будут подвергаться более сильной бомбардировке соседних молекул, а значит, будут стремиться сильнее сжаться обратно. Поэтому в целом резиновую ленту будет сложнее растянуть и ее грузоподъемность увеличится! #физика #механика #видеоуроки #science #термодинамика #МКТ #physics #опыты #эксперименты
💡 Physics.Math.Code // @physics_lib
Что же происходит в резине, когда мы её растягиваем? В обычном состоянии цепочки полимера находятся в слегка изогнутом, свернутом состоянии. Это объясняется тем, что звенья и атомы не закреплены жёстко как на каком-то каркасе или проволоке – происходит их тепловое движение и конформация полимера, то есть его пространственная форма и положение цепочек непрерывно меняются. Более того, сами цепи способны соударяться друг о друга. Когда мы начинаем растягивать резину, цепочки начинают вытягиваться вдоль одной линии. А, значит, число соударений цепочек друг о друга увеличивается. Что приводит к росту скорости молекул и увеличению внутренней энергии – резина нагревается. Как только мы прекращаем растягивать резину, тепловое движение начинает стремиться вновь «запутать» цепочки, позволить им стать изогнутыми и сократить их длину. В результате резина сжимается. Такие «расслабленные» цепочки, с которых сняли приложенное напряжение, наоборот будут терять энергию: из-за этого резина будет охлаждаться.
Чтобы убедиться в этом, вы можете проделать опыт самостоятельно: вам нужно всего лишь приложить, например, резиновую ленту (подойдут даже канцелярские резинки) к губам в момент растяжения и затем отпустить её, позволив сжаться. Таким образом вы сможете почувствовать разницу в температуре растягиваемого участка.
💥 Зная молекулярный механизм, как работают резиновые ленты, можно пользоваться таким лайфхаком: нагретая резина может поднять больший груз! При большей температуре натянутые цепочки будут подвергаться более сильной бомбардировке соседних молекул, а значит, будут стремиться сильнее сжаться обратно. Поэтому в целом резиновую ленту будет сложнее растянуть и ее грузоподъемность увеличится! #физика #механика #видеоуроки #science #термодинамика #МКТ #physics #опыты #эксперименты
💡 Physics.Math.Code // @physics_lib
❤40👍25🔥19🤯5🌚4😱3🙈1
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 Сравнение скорости движения пули и скорости разрушения стекла
Когда разбивается стекло, трещина распространяется со скоростью 4828 км/ч. Такую скорость невозможно заметить обычным взглядом, только с помощью высокоскоростной съёмки. Стекло разбивается со скоростью несколько тысяч метров в секунду. Пуля, выпущенная из автомата, например, АК-47 или винтовки НАТО G3, имеет меньшую скорость – до тысячи метров в секунду. #видеоуроки #механика #разрушения #колебания #волны #физика #physics
📚 Механика разрушений [12 книг]
⛓️ ⚙️ Механика разрушения материалов (видео)
💡 Physics.Math.Code // @physics_lib
Когда разбивается стекло, трещина распространяется со скоростью 4828 км/ч. Такую скорость невозможно заметить обычным взглядом, только с помощью высокоскоростной съёмки. Стекло разбивается со скоростью несколько тысяч метров в секунду. Пуля, выпущенная из автомата, например, АК-47 или винтовки НАТО G3, имеет меньшую скорость – до тысячи метров в секунду. #видеоуроки #механика #разрушения #колебания #волны #физика #physics
📚 Механика разрушений [12 книг]
⛓️ ⚙️ Механика разрушения материалов (видео)
💡 Physics.Math.Code // @physics_lib
4👍45🔥23❤4🤯3⚡1
This media is not supported in your browser
VIEW IN TELEGRAM
Можно ли поставить дом на шары, чтобы спасти его от землетрясения? 🏠
❌ Почему простые шары не сработают? Представьте дом на четырех бильярдных шарах. Проблемы:
→ Они могут выкатиться в сторону.
→ Давление в точке контакта огромно, и шар просто продавит пол.
→ Любой порыв ветра заставит дом качаться.
✅ А что тогда сработает? Инженеры давно разработали системы, которые отделяют здание от вибраций при землетрясениях. Это как поставить дом на "амортизаторы".
1. Сейсмические изоляторы (Сейсмоизоляция):
➖Маятниковые изоляторы: Представьте не шар, а огромную "линзу", внутри которой стальной шар качается по специальной чаше. При землетрясении здание плавно "раскачивается" на этой чаше, как маятник, гася энергию.
➖Слинговые изоляторы: Здесь используются опорные конструкции, работающие на растяжение, которые позволяют зданию качаться в определенных пределах.
➖Рельсовые системы: Здание устанавливается на специальные рельсы, позволяя ему смещаться при подземных толчках.
2. Сейсмические гасители (Демпферы). Если изоляторы — это "подвеска", то демпферы — это "тормоза". Их ставят внутри здания, чтобы поглощать энергию колебаний. Бывают:
➖Вязкостные: Как гигантские амортизаторы в автомобиле.
➖Массовые (динамические гасители): Огромный шар или маятник на верхних этажах, который раскачивается в противофазе основным колебаниям и гасит их. Знаменитый Тайбэй 101 использует такой 660-тонный шар!
3. Сейсмические компенсаторы (Тросовые системы)
➖ Системы стальных тросов и растяжек, которые перераспределяют нагрузку и не дают зданию сложиться, как карточный домик.
Идея "катящейся опоры" — гениальна в своей основе, и инженеры воплотили ее в жизнь, создав сложные и надежные системы сейсмической изоляции. Благодаря им современные здания в сейсмоопасных зонах могут пережить даже очень сильные толчки, сохранив жизни людей и свою целостность. #землетрясение #строительство #инженерия #технологии #геология #архитектура #механика #разрушения #колебания #волны #физика #physics #эксперименты
💡 Physics.Math.Code // @physics_lib
❌ Почему простые шары не сработают? Представьте дом на четырех бильярдных шарах. Проблемы:
→ Они могут выкатиться в сторону.
→ Давление в точке контакта огромно, и шар просто продавит пол.
→ Любой порыв ветра заставит дом качаться.
✅ А что тогда сработает? Инженеры давно разработали системы, которые отделяют здание от вибраций при землетрясениях. Это как поставить дом на "амортизаторы".
1. Сейсмические изоляторы (Сейсмоизоляция):
➖Маятниковые изоляторы: Представьте не шар, а огромную "линзу", внутри которой стальной шар качается по специальной чаше. При землетрясении здание плавно "раскачивается" на этой чаше, как маятник, гася энергию.
➖Слинговые изоляторы: Здесь используются опорные конструкции, работающие на растяжение, которые позволяют зданию качаться в определенных пределах.
➖Рельсовые системы: Здание устанавливается на специальные рельсы, позволяя ему смещаться при подземных толчках.
2. Сейсмические гасители (Демпферы). Если изоляторы — это "подвеска", то демпферы — это "тормоза". Их ставят внутри здания, чтобы поглощать энергию колебаний. Бывают:
➖Вязкостные: Как гигантские амортизаторы в автомобиле.
➖Массовые (динамические гасители): Огромный шар или маятник на верхних этажах, который раскачивается в противофазе основным колебаниям и гасит их. Знаменитый Тайбэй 101 использует такой 660-тонный шар!
3. Сейсмические компенсаторы (Тросовые системы)
➖ Системы стальных тросов и растяжек, которые перераспределяют нагрузку и не дают зданию сложиться, как карточный домик.
Идея "катящейся опоры" — гениальна в своей основе, и инженеры воплотили ее в жизнь, создав сложные и надежные системы сейсмической изоляции. Благодаря им современные здания в сейсмоопасных зонах могут пережить даже очень сильные толчки, сохранив жизни людей и свою целостность. #землетрясение #строительство #инженерия #технологии #геология #архитектура #механика #разрушения #колебания #волны #физика #physics #эксперименты
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍35🔥14❤13😱2✍1🗿1