This media is not supported in your browser
    VIEW IN TELEGRAM
  Задумывались ли вы, как «увидеть» невидимое? Электрическое поле окружает нас повсюду, от розетки до экрана смартфона. Давайте разберемся, как смоделировать его для точечных зарядов и сложных поверхностей и получить эти завораживающие картинки силовых линий и эквипотенциалей.
1. Фундамент: Главные Уравнения
▪️ Закон Кулона для точечного заряда:
F = k * (q₁ * q₂) / r² . Но для поля удобнее работать с напряженностью E = F / q.▪️ Принцип суперпозиции: Поле системы зарядов — это просто векторная сумма полей от каждого заряда в отдельности. Это наше главное оружие в моделировании.
2. Силовые Линии и Эквипотенциали
Поле можно описывать по-разному, и это ключ к красивой визуализации.
▪️Силовые линии (Графическое отображение напряженности E):
— Воображаемые линии, касательные к которым в каждой точке совпадают с вектором E.
— Свойства: Начинаются на «+» зарядах, заканчиваются на «-» или уходят в бесконечность. Никогда не пересекаются!
— Густота линий пропорциональна величине напряженности.
▪️Эквипотенциальные поверхности (Графическое отображение потенциала φ):
— Что это? Поверхности, где потенциал постоянен (φ = const).
— Свойства: Всегда перпендикулярны силовым линиям. Работа по перемещению заряда вдоль такой поверхности равна нулю.
3. Как Строить Уравнения?
Для точечного заряда q в точке (x₀, y₀):
— Потенциал: φ(x, y) = k * q / sqrt( (x - x₀)² + (y - y₀)² )
— Вектор напряженности E: Eₓ = -∂φ/∂x, Eᵧ = -∂φ/∂y (это просто частные производные, градиент со знаком минус).
А как получить уравнение силовой линии? Это уже сложнее. Силовая линия — это кривая, которая в каждой точке направлена вдоль E. Математически это решается через дифференциальное уравнение:
dx / Eₓ(x, y) = dy / Eᵧ(x, y). Решая его (часто численно!), мы получаем траектории для наших визуализаций.4. Инструменты для Моделирования и Визуализации
▪️Python — король научной визуализации: Библиотеки: matplotlib, numpy, scipy.
▪️Как: Задаете сетку точек (x, y), для каждой считаете Eₓ и Eᵧ (суммируя вклады от всех зарядов). Затем:
— Для силовых линий: используйте matplotlib.streamplot
— Для эквипотенциалей: matplotlib.contour или contourf для потенциала φ.
import numpy as np
import matplotlib.pyplot as plt
# Создаем сетку
x = np.linspace(-2, 2, 100)
y = np.linspace(-2, 2, 100)
X, Y = np.meshgrid(x, y)
# Задаем заряды (q, x, y)
charges = [(1, -0.5, 0), (-1, 0.5, 0)]
# Вычисляем полные Eₓ и Eᵧ на сетке
Ex = np.zeros(X.shape)
Ey = np.zeros(Y.shape)
k = 9e9
for q, xq, yq in charges:
R = np.sqrt((X - xq)**2 + (Y - yq)**2)
Ex += k * q * (X - xq) / R**3
Ey += k * q * (Y - yq) / R**3
# Рисуем силовые линии
plt.streamplot(X, Y, Ex, Ey, color='blue', linewidth=1, density=2)
plt.show()
Готовые симуляторы:
— PhET Interactive Simulations (отлично для начального понимания).
— Falstad's E&M Simulator (очень наглядно).
— Comsol Multiphysics, Ansys — для серьезного моделирования сложных поверхностей.
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
    VIEW IN TELEGRAM
  5❤81👍49🔥20🤔4⚡2🤩2🗿1
  📕 «Метод Фурье в вычислительной математике» [1992] А.И. Жуков
💾 Скачать книгу
Излагаются основы теории интегрального преобразования Фурье и его приложения к построению интерполяционных формул, к сглаживанию табличных данных и фильтрации шума, к задачам численного решения уравнений типа свертки, для исследования устойчивости разностных уравнений, а также некоторые другие приложения. Для научных работников, аспирантов и студентов, интересующихся численными методами решения задач математической физики и обработки наблюдений.
#численные_методы #физика #вычислительные_методы #physics #математика #математический_анализ #моделирование
📙 Numerical Methods and Analysis with Mathematical Modelling [2025] Fox William, West Richard
📕 Путь к интегралу [1985] Никифоровский
📙 Математическое моделирование конвективного тепломассообмена на основе уравнений Навье-Стокса [1987] Авдуевский
📕 Вычислительная математика для физиков [2021] И. Б. Петров
📙 Лекции по вычислительной математике: Лаборатория знаний [2006] Петров И.Б., Лобанов А.И.
📕 Numerical Recipes: The Art of Scientific Computing, Third Edition (with sources) [2007] Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P.
💡 Physics.Math.Code // @physics_lib
💾 Скачать книгу
Излагаются основы теории интегрального преобразования Фурье и его приложения к построению интерполяционных формул, к сглаживанию табличных данных и фильтрации шума, к задачам численного решения уравнений типа свертки, для исследования устойчивости разностных уравнений, а также некоторые другие приложения. Для научных работников, аспирантов и студентов, интересующихся численными методами решения задач математической физики и обработки наблюдений.
#численные_методы #физика #вычислительные_методы #physics #математика #математический_анализ #моделирование
📙 Numerical Methods and Analysis with Mathematical Modelling [2025] Fox William, West Richard
📕 Путь к интегралу [1985] Никифоровский
📙 Математическое моделирование конвективного тепломассообмена на основе уравнений Навье-Стокса [1987] Авдуевский
📕 Вычислительная математика для физиков [2021] И. Б. Петров
📙 Лекции по вычислительной математике: Лаборатория знаний [2006] Петров И.Б., Лобанов А.И.
📕 Numerical Recipes: The Art of Scientific Computing, Third Edition (with sources) [2007] Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P.
💡 Physics.Math.Code // @physics_lib
👍33❤13🔥8❤🔥4🤩2⚡1
  Media is too big
    VIEW IN TELEGRAM
  Space Power Facility (сокр. SPF) — крупнейшая в мире термальная вакуумная камера, созданная НАСА в 1969 году. Расположена на станции Плам-Брук, неподалёку от Сандаски. Станция Плам-Брук, в свою очередь, является частью Исследовательского центра Гленна, расположенного в Кливленде. Изначально предназначалась для ядерно-электрических испытаний в условиях вакуума, однако испытания были отменены, а камера законсервирована. В дальнейшем камера использовалась для проведения испытаний двигательных установок космических аппаратов и их систем. Кроме того, в данной камере проводились испытания работоспособности защитных систем приземления в условиях, приближенных к марсианским, для марсоходов Mars Pathfinder и проектах серии Mars Exploration Rover.
Размеры SPF составляют более 30 метров в диаметре и 40 метров - в высоту. По своему устройству SPF представляет собой огромный алюминиевый контейнер, заключённый в бетонный купол. Алюминиевый контейнер состоит из плотных рядов пластин из алюминиевого сплава Type 5083, подогнанных друг к другу таким образом, чтобы не пропускать воздух. #физика #механика #опыты #physics #эксперименты #наука #science #видеоуроки #кинематика #моделирование
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
    VIEW IN TELEGRAM
  🔥35👍21❤9🤨2🆒2
  