Physics.Math.Code
143K subscribers
5.21K photos
2.11K videos
5.81K files
4.48K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

№ 6045941532

Обратная связь: @physicist_i
Download Telegram
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ С чего начать моделирование электрических полей?

Задумывались ли вы, как «увидеть» невидимое? Электрическое поле окружает нас повсюду, от розетки до экрана смартфона. Давайте разберемся, как смоделировать его для точечных зарядов и сложных поверхностей и получить эти завораживающие картинки силовых линий и эквипотенциалей.

1. Фундамент: Главные Уравнения
▪️ Закон Кулона для точечного заряда: F = k * (q₁ * q₂) / r² . Но для поля удобнее работать с напряженностью E = F / q.
▪️ Принцип суперпозиции: Поле системы зарядов — это просто векторная сумма полей от каждого заряда в отдельности. Это наше главное оружие в моделировании.

2. Силовые Линии и Эквипотенциали
Поле можно описывать по-разному, и это ключ к красивой визуализации.
▪️Силовые линии (Графическое отображение напряженности E):
— Воображаемые линии, касательные к которым в каждой точке совпадают с вектором E.
— Свойства: Начинаются на «+» зарядах, заканчиваются на «-» или уходят в бесконечность. Никогда не пересекаются!
— Густота линий пропорциональна величине напряженности.
▪️Эквипотенциальные поверхности (Графическое отображение потенциала φ):
— Что это? Поверхности, где потенциал постоянен (φ = const).
— Свойства: Всегда перпендикулярны силовым линиям. Работа по перемещению заряда вдоль такой поверхности равна нулю.

3. Как Строить Уравнения?
Для точечного заряда q в точке (x₀, y₀):
— Потенциал: φ(x, y) = k * q / sqrt( (x - x₀)² + (y - y₀)² )
— Вектор напряженности E: Eₓ = -∂φ/∂x, Eᵧ = -∂φ/∂y (это просто частные производные, градиент со знаком минус).
А как получить уравнение силовой линии? Это уже сложнее. Силовая линия — это кривая, которая в каждой точке направлена вдоль E. Математически это решается через дифференциальное уравнение: dx / Eₓ(x, y) = dy / Eᵧ(x, y). Решая его (часто численно!), мы получаем траектории для наших визуализаций.

4. Инструменты для Моделирования и Визуализации
▪️Python — король научной визуализации: Библиотеки: matplotlib, numpy, scipy.
▪️Как: Задаете сетку точек (x, y), для каждой считаете Eₓ и Eᵧ (суммируя вклады от всех зарядов). Затем:
— Для силовых линий: используйте matplotlib.streamplot
— Для эквипотенциалей: matplotlib.contour или contourf для потенциала φ.

🖥 Простой пример кода для двух зарядов:
import numpy as np
import matplotlib.pyplot as plt

# Создаем сетку
x = np.linspace(-2, 2, 100)
y = np.linspace(-2, 2, 100)
X, Y = np.meshgrid(x, y)

# Задаем заряды (q, x, y)
charges = [(1, -0.5, 0), (-1, 0.5, 0)]

# Вычисляем полные Eₓ и Eᵧ на сетке
Ex = np.zeros(X.shape)
Ey = np.zeros(Y.shape)
k = 9e9
for q, xq, yq in charges:
R = np.sqrt((X - xq)**2 + (Y - yq)**2)
Ex += k * q * (X - xq) / R**3
Ey += k * q * (Y - yq) / R**3

# Рисуем силовые линии
plt.streamplot(X, Y, Ex, Ey, color='blue', linewidth=1, density=2)
plt.show()

Готовые симуляторы:
— PhET Interactive Simulations (отлично для начального понимания).
— Falstad's E&M Simulator (очень наглядно).
— Comsol Multiphysics, Ansys — для серьезного моделирования сложных поверхностей.

🔴 А что с Крупными Заряженными Поверхностями? Здесь принцип суперпозиции остается, но суммирование становится интегрированием. Каждую поверхность разбиваете на маленькие точечные заряды dq и интегрируете их вклад в поле. На практике для сложных форм это почти всегда делается численными методами (например, методом конечных элементов), которые и используют пакеты вроде Comsol. Начните с Python и пары точечных зарядов. Поймите связь между φ и E, научитесь строить streamplot и contour. #электричество #физика #моделирование #визуализация #python #наука #образование #электрическоеполе #программирование

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
581👍49🔥20🤔42🤩2🗿1
📕 «Метод Фурье в вычислительной математике» [1992] А.И. Жуков

💾 Скачать книгу

Излагаются основы теории интегрального преобразования Фурье и его приложения к построению интерполяционных формул, к сглаживанию табличных данных и фильтрации шума, к задачам численного решения уравнений типа свертки, для исследования устойчивости разностных уравнений, а также некоторые другие приложения. Для научных работников, аспирантов и студентов, интересующихся численными методами решения задач математической физики и обработки наблюдений.
#численные_методы #физика #вычислительные_методы #physics #математика #математический_анализ #моделирование

📙 Numerical Methods and Analysis with Mathematical Modelling [2025] Fox William, West Richard

📕 Путь к интегралу [1985] Никифоровский

📙 Математическое моделирование конвективного тепломассообмена на основе уравнений Навье-Стокса [1987] Авдуевский

📕 Вычислительная математика для физиков [2021] И. Б. Петров

📙 Лекции по вычислительной математике: Лаборатория знаний [2006] Петров И.Б., Лобанов А.И.

📕 Numerical Recipes: The Art of Scientific Computing, Third Edition (with sources) [2007] Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P.

💡 Physics.Math.Code // @physics_lib
👍3313🔥8❤‍🔥4🤩21
Media is too big
VIEW IN TELEGRAM
👩‍💻Самая большая в мире вакуумная камера. В этой камере проводили эксперимент, который подтвердил теорию Галилея относительно ускорения свободного падения. Суть опыта: с одинаковой высоты в один момент времени отпустили шар для боулинга и несколько перьев. В замедленной съёмке показали, что оба объекта ускоряются одинаково и достигают плоскости Земли одновременно. Это произошло потому, что на них не действует сопротивление воздуха, так как объекты находились в вакууме.

Space Power Facility (сокр. SPF) — крупнейшая в мире термальная вакуумная камера, созданная НАСА в 1969 году. Расположена на станции Плам-Брук, неподалёку от Сандаски. Станция Плам-Брук, в свою очередь, является частью Исследовательского центра Гленна, расположенного в Кливленде. Изначально предназначалась для ядерно-электрических испытаний в условиях вакуума, однако испытания были отменены, а камера законсервирована. В дальнейшем камера использовалась для проведения испытаний двигательных установок космических аппаратов и их систем. Кроме того, в данной камере проводились испытания работоспособности защитных систем приземления в условиях, приближенных к марсианским, для марсоходов Mars Pathfinder и проектах серии Mars Exploration Rover.

Размеры SPF составляют более 30 метров в диаметре и 40 метров - в высоту. По своему устройству SPF представляет собой огромный алюминиевый контейнер, заключённый в бетонный купол. Алюминиевый контейнер состоит из плотных рядов пластин из алюминиевого сплава Type 5083, подогнанных друг к другу таким образом, чтобы не пропускать воздух. #физика #механика #опыты #physics #эксперименты #наука #science #видеоуроки #кинематика #моделирование

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥35👍219🤨2🆒2