Media is too big
VIEW IN TELEGRAM
Фильм поделён на три части:
1. Условия возникновения электрического тока (начинается с 00:21).
2. Источники электрического тока (03:22).
3. Электрический ток в металлах и электролитах (08:53).
Электрический ток — упорядоченное некомпенсированное движение свободных электрически заряженных частиц под воздействием электрического поля. Такими частицами могут являться: в проводниках — электроны, в электролитах — ионы (катионы и анионы), в газах — ионы и электроны, в вакууме при определенных условиях — электроны, в полупроводниках — электроны и дырки (электронно-дырочная проводимость).
При изучении электрического тока, было обнаружено множество его свойств, которые позволили найти ему практическое применение в различных областях человеческой деятельности, и даже создать новые области, которые без существования электрического тока были бы невозможны.
Некоторые этапы открытия электрического тока:
▪️ 1600 год — итальянский учёный Гальвани обнаружил, что две металлические пластины, помещённые в раствор соли, начинают двигаться друг к другу. Это явление было названо «гальваническим эффектом».
▪️ 1775 год — Алессандро Вольта создал первый электрический элемент («вольтов столб»), который состоял из двух металлических пластин, разделённых изолятором. При соединении пластин с помощью ключа учёный обнаружил, что между ними возникает электрический ток.
▪️ 1820 год — Майкл Фарадей открыл, что при пропускании электрического тока через проводник вокруг него образуется магнитное поле. Это открытие позволило разработать новые способы передачи энергии на большие расстояния, такие как телеграф и телефон.
Некоторые свойства электрического тока:
▪️ Тепловое действие — ток нагревает проводники. Это используется в электрических обогревателях и утюгах.
▪️ Магнитное действие — ток образует магнитное поле вокруг проводника, по которому течёт. Это свойство применяется в электродвигателях и генераторах.
▪️ Химическое действие — ток вызывает химические реакции, например, в процессе получения металлов из руд (электролиз).
Некоторые мифы об электрическом токе:
▪️ Чем больше напряжение, тем больше опасность — на самом деле опасна сила тока, а не напряжение.
▪️ Вода проводит электричество — чистая вода почти полностью изолятор, но грязная или набранная из колодца вода содержит множество растворённых веществ, которые проводят электричество.
▪️ Резиновые перчатки и обувь не проводят электричество — только профессиональные диэлектрические боты и перчатки, испытанные на заводе высоким напряжением, могут служить защитой от электрического тока.
#физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
❤65👍30🔥17⚡10🤩1
Media is too big
VIEW IN TELEGRAM
Радиосвязь работает благодаря передаче информации с использованием электромагнитных волн (радиоволн). Сигнал преобразуется в радиоволны, распространяется в пространстве и принимается другим устройством. Процесс радиосвязи включает несколько этапов:
1. Формирование сигнала. Источник передаёт данные (голос, текст или другие виды информации) в радиопередатчик.
2. Модуляция. Передатчик преобразует данные в радиоволны, изменяя параметры несущей волны (амплитуду, частоту или фазу).
3. Передача. Сигнал передаётся через антенну и распространяется в радиопространстве.
4. Приём. Приёмное устройство улавливает сигнал, переданный через антенну, и демодулирует его для восстановления исходных данных.
5. Обратная связь. Для двусторонней связи процесс повторяется, позволяя участникам общаться в реальном времени.
Некоторые виды модуляции, используемые в радиосвязи:
▪️ Амплитудная модуляция (АМ). Амплитуда несущего сигнала изменяется в соответствии с величиной полезного сигнала.
▪️ Частотная модуляция (ЧМ). Амплитуда несущей волны остаётся постоянной, но её частота изменяется в зависимости от величины полезного сигнала.
▪️ Фазовая модуляция (ФМ). У несущего сигнала не меняется ни частота, ни амплитуда, но участки сигнала, передающие «0», сдвинуты по фазе относительно участка, передающего «1».
📚 Искусство схемотехники, 4-е издание (в 3 томах) [1993—2014] Пауль Хоровиц, Уинфилд Хилл
⚡️ Физические основы радиопередачи [1989] Киностудия Леннаучфильм
⚡️ Фигуры Лихтенберга
🧲 ВЧ магнитное поле и ферромагнитная жидкость
⚡️ Обучающий фильм Электрический ток [СССР]
#физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥72👍32❤14⚡6❤🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
🧲☺️ Визуализация магнитного поля
🧲 Насос без подвижных частей может перекачивать жидкость, но как?
🧲 Магнит и медь. Закон Фарадея. Магнитное демпфирование
📚 Искусство схемотехники, 4-е издание (в 3 томах) [1993—2014] Пауль Хоровиц, Уинфилд Хилл
⚡️ Физические основы радиопередачи [1989] Киностудия Леннаучфильм
⚡️ Фигуры Лихтенберга
🧲 ВЧ магнитное поле и ферромагнитная жидкость
⚡️ Обучающий фильм Электрический ток [СССР]
#физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика
💡 Physics.Math.Code // @physics_lib
🧲 Насос без подвижных частей может перекачивать жидкость, но как?
🧲 Магнит и медь. Закон Фарадея. Магнитное демпфирование
📚 Искусство схемотехники, 4-е издание (в 3 томах) [1993—2014] Пауль Хоровиц, Уинфилд Хилл
⚡️ Физические основы радиопередачи [1989] Киностудия Леннаучфильм
⚡️ Фигуры Лихтенберга
🧲 ВЧ магнитное поле и ферромагнитная жидкость
⚡️ Обучающий фильм Электрический ток [СССР]
#физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍33❤6🔥6⚡2🆒2😱1
В этом посте предлагаю обсудить вопросы, связанные с электроникой и цифровой схемотехникой. Всё это будет полезно начинающим.
◾️ 1. С чего начать изучать электронику?
◾️ 2. Стоит ли прочитать учебник по физике, раздел "электричество и магнетизм" ?
◾️ 3. Лучше начинать с аналоговых приборов или сразу переходить к изучению цифровой схемотехники?
◾️ 4. Нужны ли хорошие знания электроники человеку, занимающемуся программированием встраиваемых систем?
◾️ 5. Стоит ли пытаться травить платы самостоятельно или лучше заказать?
◾️ 6. Хлористое железо, лимонная кислота или фоторезистор?
◾️ 7. Что нужно спаять первым делом? С чего начинать практику?
◾️ 8. Какой набор инструментов/приборов хватит начинающему радиолюбителю?
#электроника #схемотехника #радиофизика #ночной_чат #физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍66❤14🔥14🗿3❤🔥2👏2🙈2⚡1
Media is too big
VIEW IN TELEGRAM
📻 «Окопное радио» ⚡️ (также известное как «foxhole radio») — самодельный радиоприёмник, который использовали солдаты во время Второй мировой войны для прослушивания местных радиостанций.
Конструкция: в качестве детектора радиоволн применялось лезвие безопасной бритвы, которое действовало как кристалл, а проволокой, английской булавкой или грифелем графитового карандаша служили «кошачьими усами». Окопные рации состояли из проволочной антенны, катушки из проволоки, служившей индуктором, наушников и некоего подобия самодельного диодного детектора для восстановления выпрямления сигнала. Детекторы состояли из электрического контакта между двумя разными проводниками с полупроводниковой плёнкой коррозии между ними. Их делали из различных подручных материалов. Один из распространённых типов состоял из окисленного лезвия бритвы (ржавого или обгоревшего), к которому булавкой прижимался грифель карандаша. Оксидный слой на лезвии и точечный контакт грифеля карандаша образуют полупроводниковый диод Шоттки и пропускают ток только в одном направлении. Только определённые участки лезвия работали как диоды, поэтому солдат водил грифелем карандаша по поверхности, пока в наушниках не начинала звучать радиостанция. Другой конструкцией детектора был угольный стержень батарейки, лежавший на краях двух вертикальных бритвенных лезвий, по образцу «микрофонного» детектора 1879 года Дэвида Эдварда Хьюза.
Принцип работы: оксидный слой на лезвии и точечный контакт грифеля карандаша образуют полупроводниковый диод Шоттки и пропускают ток только в одном направлении. Только определённые участки лезвия действовали как диоды, поэтому солдат водил карандашным грифелем по поверхности до тех пор, пока в наушниках не зазвучит радиостанция.
Особенности: приёмник не имел источника питания и питался от энергии, получаемой от радиостанции.
История: одна из первых газетных статей об окопном радиоприёмнике была опубликована в «Нью-Йорк Таймс» 29 апреля 1944 года. Этот радиоприёмник был собран рядовым Элдоном Фелпсом из Энида, штат Оклахома, который позже утверждал, что именно он изобрёл эту конструкцию. Он был довольно примитивным: лезвие бритвы, воткнутое в кусок дерева, служило детектором, а конец антенного провода — кошачьим усом. Ему удавалось принимать передачи из Рима и Неаполя. #физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика
⚡️ Физические основы радиопередачи [1989] Киностудия Леннаучфильм
📗 Первая книга радиолюбителя [1961] Костыков Ю. В., Ермолаев Л. Н.
💡 Physics.Math.Code // @physics_lib
Конструкция: в качестве детектора радиоволн применялось лезвие безопасной бритвы, которое действовало как кристалл, а проволокой, английской булавкой или грифелем графитового карандаша служили «кошачьими усами». Окопные рации состояли из проволочной антенны, катушки из проволоки, служившей индуктором, наушников и некоего подобия самодельного диодного детектора для восстановления выпрямления сигнала. Детекторы состояли из электрического контакта между двумя разными проводниками с полупроводниковой плёнкой коррозии между ними. Их делали из различных подручных материалов. Один из распространённых типов состоял из окисленного лезвия бритвы (ржавого или обгоревшего), к которому булавкой прижимался грифель карандаша. Оксидный слой на лезвии и точечный контакт грифеля карандаша образуют полупроводниковый диод Шоттки и пропускают ток только в одном направлении. Только определённые участки лезвия работали как диоды, поэтому солдат водил грифелем карандаша по поверхности, пока в наушниках не начинала звучать радиостанция. Другой конструкцией детектора был угольный стержень батарейки, лежавший на краях двух вертикальных бритвенных лезвий, по образцу «микрофонного» детектора 1879 года Дэвида Эдварда Хьюза.
Принцип работы: оксидный слой на лезвии и точечный контакт грифеля карандаша образуют полупроводниковый диод Шоттки и пропускают ток только в одном направлении. Только определённые участки лезвия действовали как диоды, поэтому солдат водил карандашным грифелем по поверхности до тех пор, пока в наушниках не зазвучит радиостанция.
Особенности: приёмник не имел источника питания и питался от энергии, получаемой от радиостанции.
История: одна из первых газетных статей об окопном радиоприёмнике была опубликована в «Нью-Йорк Таймс» 29 апреля 1944 года. Этот радиоприёмник был собран рядовым Элдоном Фелпсом из Энида, штат Оклахома, который позже утверждал, что именно он изобрёл эту конструкцию. Он был довольно примитивным: лезвие бритвы, воткнутое в кусок дерева, служило детектором, а конец антенного провода — кошачьим усом. Ему удавалось принимать передачи из Рима и Неаполя. #физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика
📗 Первая книга радиолюбителя [1961] Костыков Ю. В., Ермолаев Л. Н.
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍123❤35🔥30🤷♂3👏3❤🔥2⚡2🤩2