➰ Кнут способен преодолеть звуковой барьер. При правильном использовании кончик кнута развивает скорость более 1100 км/ч и создаёт характерный хлопок.
Это возможно благодаря специфической конструкции кнута: поперечное сечение и масса кнута постепенно уменьшаются в направлении от ручки к кончику, и скорость кончика кнута увеличивается пропорционально его утончению. Этот вывод дают формулы скорости для бегущей волны.
Некоторые обычные кнуты, такие как кнут для быка или хлыст для скота, способны двигаться быстрее звука: кончик кнута превышает эту скорость и вызывает резкий треск — буквально звуковой удар.
🦕 Некоторые палеобиологи сообщают, что компьютерные модели их биомеханических возможностей предполагают, что некоторые длиннохвостые динозавры, такие как бронтозавр, апатозавр и диплодок, могли взмахивать хвостами со сверхзвуковой скоростью, издавая треск. Это открытие является теоретическим и оспаривается другими специалистами в этой области. #колебания #геометрия #физика #математика #math #physics #акустика #волны #звук #видеоуроки
💡 Physics.Math.Code // @physics_lib
Это возможно благодаря специфической конструкции кнута: поперечное сечение и масса кнута постепенно уменьшаются в направлении от ручки к кончику, и скорость кончика кнута увеличивается пропорционально его утончению. Этот вывод дают формулы скорости для бегущей волны.
Некоторые обычные кнуты, такие как кнут для быка или хлыст для скота, способны двигаться быстрее звука: кончик кнута превышает эту скорость и вызывает резкий треск — буквально звуковой удар.
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍93🔥25❤10🤯10⚡8🆒1
Явление было обнаружено в 1934 году П. А. Черенковым при исследовании люминесценции растворов как слабое голубое свечение жидкостей под действием гамма-излучения. Объяснение эффекта смогли дать советские физики Игорь Тамм и Илья Франк в 1937 году. Они объяснили эффект равномерным и прямолинейным движением заряженных частиц среды со скоростями, превышающими скорость света в конкретной среде.
Эффект Вавилова — Черенкова используется в разных областях, например:
▪️ В медицине для лучевой терапии — помогает с высокой точностью разрушать опухоль, не повреждая здоровые клетки.
▪️ В детекторах — с помощью него удаётся определить энергию, скорость и направление элементарных частиц космических лучей.
▪️ В астрономии для исследования гамма-излучения от разных астрономических объектов.
За открытие и создание теории эффекта Вавилова — Черенкова в 1958 году И. Е. Тамм, И. М. Франк и П. А. Черенков были удостоены Нобелевской премии.
#колебания #ядерная_физика #физика #атомная_физика #свет #physics #излучение #волны #оптика #видеоуроки
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍102❤24🔥14⚡7❤🔥4
This media is not supported in your browser
VIEW IN TELEGRAM
Интересный случай: когда зеркало отражает лазерный луч в сам лазер. Это называют внешней оптической обратной связью.
При этом все очень сильно зависит от природы лазера. В некоторых случаях это будет для лазера фатальным, так как мощность на выходном зеркале возрастет (иногда значительно из-за повышения оптической добротности резонатора), и лазер, исходно работающий на мощности, близкой к предельно допустимой для выходного зеркала (а часто так и бывает), это зеркало просто сожжет. Именно такая ситуация характерна для полупроводниковых лазеров, и если посветить лазерной указкой в зеркало, она этого может не пережить (в хороших лазерных указках система стабилизации выходной мощности в этой ситуации снизит ток лазера, но такие указки давно перестали делать). Однако и слабый отраженный сигнал, попадающий на лазерный диод, резко ухудшает характеристики генерируемого излучения, особенно шумы. При разработке приборов, использующих полупроводниковые лазеры, приходится тщательно бороться с оптической обратной связью — например, плоские поверхности в параллельных пучках обязательно или ставятся под небольшим углом к оси (либо под углом Брюстера), либо используются специальные компоненты, пропускающие свет в одну сторону — оптические изоляторы.
В других же случаях такая внешняя оптическая обратная связь не несет угрозы целостности лазера (например, когда речь идет о газовых и непрерывных твердотельных лазерах с относительно небольшой излучаемой мощностью), однако возникающие при этом паразитные резонаторы изменяют модовую структуру пучка, которая становится чувствительной к изменениям геометрии этих резонаторов. Это приводит к непредсказуемым колебаниям мощности и модового состава лазерного излучения, возрастанию шумов, паразитной частотной модуляции спектра, и другим нежелательным явлениям.
В импульсных лазерах, генерирующих фемтосекундные импульсы, оптическая обратная связь приводит к сильным искажениям огибающей импульсов, вплоть до появления паразитной генерации из-за усиления отраженных импульсов, вернувшихся в резонатор. #колебания #геометрия #физика #моделирование #свет #physics #излучение #волны #оптика #видеоуроки
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥92👍52❤21🤯14⚡5❤🔥3💯1
Media is too big
VIEW IN TELEGRAM
▪️ Эллипс: если поместить источник света в фокусе эллипса, то после отражения от стенок эллипса все лучи сойдутся в другом фокусе, причём одновременно. Это свойство используется, например, в методе литотрипсии в медицине, где на основе эллипса удаляют камни из почек.
▪️ Гипербола: луч света, направленный на один фокус, отражается от гиперболы таким образом, что кажется, будто он исходит из другого фокуса. Это свойство используют для изготовления ламп с рассеивающим светом, например, при кварцевании помещения.
▪️ Парабола: лучи света, параллельные оси параболы, отражаются от неё и собираются в фокусе. Это свойство используется в параболических зеркалах и антеннах, а также в конструкциях прожекторов, фонарей, фар, телескопов-рефлекторов.
Таким образом, эллипс фокусирует лучи, выпущенные из одного фокуса, гипербола — лучи, направленные в один фокус, а парабола — лучи, параллельные её оси.
❓Вопрос для наших подписчиков: Подходит ли зеркало сферической формы? Сможет ли оно собрать все лучи в одно точке?
🔎 Оптика вогнутых (сферических и параболических) зеркал
📡 Задача по физике [оптике] для наших подписчиков
#колебания #ядерная_физика #физика #атомная_физика #свет #physics #излучение #волны #оптика #видеоуроки
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥127👍37❤21🤩3❤🔥1🥰1👏1🤯1
Media is too big
VIEW IN TELEGRAM
🔊 Узоры стоячих волн — фигуры Хладни 〰️
В данном эксперименте мы наблюдаем визуализацию звука по конфигурации стоячих волн, в узлы которых попадают кристаллики соли, вырисовывая картину колебания. С увеличением частоты геометрические узоры из соли меняют свою форму и становятся более сложными.
Предлагаем посмотреть на современную реализацию эксперимента, который повторяет «открытие» немецкого ученого Эрнеста Хладни. Он исследовал влияние вибраций разных частот на механические поверхности, водя смычком вдоль края пластины (пластины Хладни), покрытой мукой, заметил как изменяется ее форма. Свои наблюдения изложил в книге «Теория Звука». В 1960-х Ханс Дженни расширил работы Хладни, используя различные жидкости и электронные усилители для генерирования различных звуковых частот. Он же заодно и ввел термин «киматика».
Если вы пропустите обычную синусоидную волну через тарелку с водой, то вы увидите узор прямо на воде. В зависимости от частоты волн будут появляться различные изображения пульсаций. Чем выше частота, тем более сложными становятся узоры. Эти формы являются повторяющимися и отнюдь не случайными. Вибрация организует материю в сложные формы, получаемые из простых и повторяющихся волн. #механика #физика #наука #physics #колебания #science #волны #physics
CYMATICS׃ Science Vs Music — Nigel Stanford
Воздействие звуковых волн различных частот на соль
💡 Physics.Math.Code // @physics_lib
В данном эксперименте мы наблюдаем визуализацию звука по конфигурации стоячих волн, в узлы которых попадают кристаллики соли, вырисовывая картину колебания. С увеличением частоты геометрические узоры из соли меняют свою форму и становятся более сложными.
Предлагаем посмотреть на современную реализацию эксперимента, который повторяет «открытие» немецкого ученого Эрнеста Хладни. Он исследовал влияние вибраций разных частот на механические поверхности, водя смычком вдоль края пластины (пластины Хладни), покрытой мукой, заметил как изменяется ее форма. Свои наблюдения изложил в книге «Теория Звука». В 1960-х Ханс Дженни расширил работы Хладни, используя различные жидкости и электронные усилители для генерирования различных звуковых частот. Он же заодно и ввел термин «киматика».
Если вы пропустите обычную синусоидную волну через тарелку с водой, то вы увидите узор прямо на воде. В зависимости от частоты волн будут появляться различные изображения пульсаций. Чем выше частота, тем более сложными становятся узоры. Эти формы являются повторяющимися и отнюдь не случайными. Вибрация организует материю в сложные формы, получаемые из простых и повторяющихся волн. #механика #физика #наука #physics #колебания #science #волны #physics
CYMATICS׃ Science Vs Music — Nigel Stanford
Воздействие звуковых волн различных частот на соль
💡 Physics.Math.Code // @physics_lib
❤52👍47🔥15✍2⚡2🆒2
Media is too big
VIEW IN TELEGRAM
Гость — Рыбников Юрий Степанович, «учёный», предложивший периодическую систему электроатомов Равноправной Устойчивой Симметрии (РУС) землян, методику построения электроструктур электроатомов, соединившую физику, химию, электричество, счёт РУСов (математику) в единую систему Знаний. Полностью отрицает современную теорию строения атома и множество других современных научных представлений.
Гениальная сдержанность ведущего.
#электродинамика #квантоваяфизика #физика #наука #physics #колебания #science #волны #physics
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
11🗿169👍44🤯38✍15🤩14🔥11❤10🫡8🥰6🤓5🌚4
Media is too big
VIEW IN TELEGRAM
Узоры в виде муара появляются во многих ситуациях. При печати напечатанный узор из точек может искажать изображение. В телевидении и цифровой фотографии узор на фотографируемом объекте может искажать форму световых датчиков, создавая нежелательные артефакты.
В физике его проявлением является интерференция волн, которую можно наблюдать в эксперименте с двумя щелями и феномене биений в акустике.
Муар-узоры часто являются артефактомизображений, созданных с помощью различных методов цифрового изображения и компьютерной графики, например, при сканированииполутонового изображения или трассировке лучей на клетчатой плоскости (последнее является частным случаем сглаживания из-за недостаточной дискретизации мелкого регулярного рисунка). Это может быть преодолено при отображении текстур с помощью mipmapping и анизотропной фильтрации.
⚙️ Смотреть ещё видео
#физика #оптика #опыты #physics #эксперименты #наука #science #видеоуроки #графика #моделирование #волны
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍84❤22🔥12🆒5❤🔥3⚡1🥰1👏1🤩1
This media is not supported in your browser
VIEW IN TELEGRAM
▪️ Специальная теория относительности. Описывает поведение объектов, которые движутся с постоянной скоростью. Теория утверждает, что время и пространство не являются абсолютно фиксированными для всех наблюдателей — они могут изменяться в зависимости от скорости объекта. Некоторые принципы специальной теории относительности:
— Принцип относительности — законы физики одинаковы для всех наблюдателей, независимо от того, находятся ли они в покое или движутся с постоянной скоростью относительно других объектов.
— Постоянство скорости света — скорость света всегда одинаковая (примерно 300 000 км/с) и не зависит от того, как быстро движется источник света или наблюдатель.
▫️ Общая теория относительности. Расширяет идеи специальной теории относительности и объясняет гравитацию. Теория утверждает, что гравитация — это не сила, а искривление пространства-времени, вызванное массой и энергией объектов. Некоторые принципы общей теории относительности:
— Эквивалентность гравитации и ускорения — невозможно отличить действие гравитации от ускоренного движения.
— Гравитационное замедление времени — часы идут медленнее вблизи массивных объектов, например, рядом с чёрной дырой время почти останавливается. #физика #теория_относительности #оптика #опыты #эксперименты #physics #видеоуроки #научные_фильмы #свет #волны #СТО #ОТО #science
👨🏻💻 Видеолекции по теории поля и СТО [Часть 1]
👨🏻💻 Видеолекции по теории поля и СТО [Часть 2]
📚 3 книги по теории относительности
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
1❤🔥40👍27❤20🔥7✍5🤨4🤔3🆒2
📷 Pinhole effect — это оптический принцип, при котором свет, проходящий через небольшое отверстие, фокусируется в более узкий луч, что уменьшает рассеивание и создаёт чёткое изображение. Некоторые области применения эффекта пинхол:
▪️Дизайн очков. Эффект пинхол используется в очках с несколькими небольшими отверстиями на непрозрачных линзах. Такие очки помогают снизить нагрузку на глаза и стимулируют работу глазных мышц.
▪️Съёмка. Эффект пинхол применяется в пинхол-камерах, где для получения изображения используется маленькое отверстие перед датчиком. Чем меньше диаметр отверстия, тем чётче будет картинка.
▪️Защита от яркого света. Эффект пинхол использовался в защитных очках, например, для защиты от снежной слепоты.
▪️Также пинхол-съёмку применяют для захвата движения солнца за длительный период времени, этот тип фотографии называется солариграфией.
Стено́п (от фр. Sténopé) — фотографический аппарат без объектива, роль которого выполняет малое отверстие. В современной фотографии также распространено название «пинхол» (англ. pinhole от pin «булавка» + hole «отверстие»).
Наибольшая резкость изображения получается, когда соблюдено определенное отношение между диаметром отверстия и его положением относительно светочувствительного элемента. Преимуществом стенопа служит полная ортоскопичность изображения, даваемая им, и неограниченная глубина резкости. Из-за незначительной яркости изображения в фокальной плоскости при съемке требуется продолжительная выдержка. #факты #оптика #техника #физика #волны #дифракция #physics #science
💡 Physics.Math.Code // @physics_lib
▪️Дизайн очков. Эффект пинхол используется в очках с несколькими небольшими отверстиями на непрозрачных линзах. Такие очки помогают снизить нагрузку на глаза и стимулируют работу глазных мышц.
▪️Съёмка. Эффект пинхол применяется в пинхол-камерах, где для получения изображения используется маленькое отверстие перед датчиком. Чем меньше диаметр отверстия, тем чётче будет картинка.
▪️Защита от яркого света. Эффект пинхол использовался в защитных очках, например, для защиты от снежной слепоты.
▪️Также пинхол-съёмку применяют для захвата движения солнца за длительный период времени, этот тип фотографии называется солариграфией.
Стено́п (от фр. Sténopé) — фотографический аппарат без объектива, роль которого выполняет малое отверстие. В современной фотографии также распространено название «пинхол» (англ. pinhole от pin «булавка» + hole «отверстие»).
Наибольшая резкость изображения получается, когда соблюдено определенное отношение между диаметром отверстия и его положением относительно светочувствительного элемента. Преимуществом стенопа служит полная ортоскопичность изображения, даваемая им, и неограниченная глубина резкости. Из-за незначительной яркости изображения в фокальной плоскости при съемке требуется продолжительная выдержка. #факты #оптика #техника #физика #волны #дифракция #physics #science
💡 Physics.Math.Code // @physics_lib
1❤47👍30🔥7✍3😍2🤝1
This media is not supported in your browser
VIEW IN TELEGRAM
〰️ Воздействие звуковой волны 24 Гц на струю воды 🔉
Эксперимент, демонстрирующий отклонение и «замирание» струи воды под воздействием звука из динамика. «Замирание» струи воды происходит под воздействием звука из динамика, воспроизводящего синусоидальный сигнал с частотой 24 Гц. Поскольку видеокамера осуществляет запись видео точно с такой же частотой - 24 Гц, то струя воды как бы замирает. Вживую это не заметно, это стробоскопический эффект, который виден только на видеозаписи с совпадающей частотой кадров. При уменьшении частоты сигнала до 23 Гц создаётся иллюзия, словно струя воды поднимается вверх, а при 25 герц — медленно спускается вниз. #видеоуроки #механика #акустика #колебания #волны #физика
💡 Physics.Math.Code // @physics_lib
Эксперимент, демонстрирующий отклонение и «замирание» струи воды под воздействием звука из динамика. «Замирание» струи воды происходит под воздействием звука из динамика, воспроизводящего синусоидальный сигнал с частотой 24 Гц. Поскольку видеокамера осуществляет запись видео точно с такой же частотой - 24 Гц, то струя воды как бы замирает. Вживую это не заметно, это стробоскопический эффект, который виден только на видеозаписи с совпадающей частотой кадров. При уменьшении частоты сигнала до 23 Гц создаётся иллюзия, словно струя воды поднимается вверх, а при 25 герц — медленно спускается вниз. #видеоуроки #механика #акустика #колебания #волны #физика
💡 Physics.Math.Code // @physics_lib
❤67👍52🤯25🔥13👻5🤔4🆒2❤🔥1⚡1🙈1
This media is not supported in your browser
VIEW IN TELEGRAM
🔊 Ультразвуковая пластина (мембрана, пьезоизлучатель) — ключевой элемент увлажнителя воздуха. Она преобразует обычную воду в мельчайший туман, который увлажняет воздух в помещении.
Принцип действия: на пластину подают высокочастотное напряжение. Под его воздействием мембрана колеблется, в водяном слое появляются волны пониженного и повышенного давления, чередующиеся между собой. В зоне низкого давления жидкость «вскипает» при невысокой температуре, происходит выброс водяного аэрозоля.
▪️Генерация ультразвуковых волн (обратный пьезоэлектрический эффект). На пластину подают электрические колебания от генератора, и под их действием она расширяется и сжимается по толщине. Это вызывает колебания, которые излучают ультразвуковые волны.
▪️Приём ультразвуковых волн (прямой пьезоэлектрический эффект). Под действием ультразвуковой волны пластина испытывает сжатия и растяжения, и в результате прямого пьезоэффекта между обкладками возникает электрическое напряжение, пропорциональное акустическому давлению волны.
Для генерации продольных колебаний используют деформацию растяжения-сжатия, для генерации поперечных — сдвиговую деформацию. Преобразователь с такой пластиной прижимают к поверхности изделия через слой контактной жидкости, в результате в изделии возникают продольные волны, направленные под прямым углом к поверхности.
Пьезоэлектрический эффект — явление, при котором под воздействием механического напряжения или деформации в кристалле возникает электрическая поляризация, величина и знак которой зависят от направления и значения приложенного напряжения. Собственная частота колебаний в пьезопластине пропорциональна скорости звука в материале пластины и её толщине. Чем тоньше пластина, тем выше её собственная частота. На практике под влиянием конструктивных элементов пьезоэлектрического преобразователя, непосредственно контактирующих с пьезопластиной, собственная частота немного изменяется. Частоту, которую возбуждает преобразователь, называют рабочей частотой. #физика #опыты #колебания #волны #пьезодинамика #physics #gif #гидродинамика
💡 Physics.Math.Code // @physics_lib
Принцип действия: на пластину подают высокочастотное напряжение. Под его воздействием мембрана колеблется, в водяном слое появляются волны пониженного и повышенного давления, чередующиеся между собой. В зоне низкого давления жидкость «вскипает» при невысокой температуре, происходит выброс водяного аэрозоля.
▪️Генерация ультразвуковых волн (обратный пьезоэлектрический эффект). На пластину подают электрические колебания от генератора, и под их действием она расширяется и сжимается по толщине. Это вызывает колебания, которые излучают ультразвуковые волны.
▪️Приём ультразвуковых волн (прямой пьезоэлектрический эффект). Под действием ультразвуковой волны пластина испытывает сжатия и растяжения, и в результате прямого пьезоэффекта между обкладками возникает электрическое напряжение, пропорциональное акустическому давлению волны.
Для генерации продольных колебаний используют деформацию растяжения-сжатия, для генерации поперечных — сдвиговую деформацию. Преобразователь с такой пластиной прижимают к поверхности изделия через слой контактной жидкости, в результате в изделии возникают продольные волны, направленные под прямым углом к поверхности.
Пьезоэлектрический эффект — явление, при котором под воздействием механического напряжения или деформации в кристалле возникает электрическая поляризация, величина и знак которой зависят от направления и значения приложенного напряжения. Собственная частота колебаний в пьезопластине пропорциональна скорости звука в материале пластины и её толщине. Чем тоньше пластина, тем выше её собственная частота. На практике под влиянием конструктивных элементов пьезоэлектрического преобразователя, непосредственно контактирующих с пьезопластиной, собственная частота немного изменяется. Частоту, которую возбуждает преобразователь, называют рабочей частотой. #физика #опыты #колебания #волны #пьезодинамика #physics #gif #гидродинамика
💡 Physics.Math.Code // @physics_lib
👍95❤41🔥25🤯4⚡2
Это магическое зрелище: водишь деревянным стиком по краю тибетской чаши, а внутри спокойная вода вдруг начинает бурлить, будто вскипела! 🫧 Но так ли это на самом деле? Давайте разбираться с точки зрения физики.
Короткий ответ: Нет, вода не кипит. Её температура не меняется. А вот что происходит на самом деле — это чистой воды резонанс и стоячие волны.
🎻 Что такое резонанс? Представьте, что вы раскачиваете кого-то на качелях. Если толкать в самый подходящий момент (в такт), качели будут взлетать все выше и выше. Это и есть резонанс — резкое возрастание амплитуды колебаний системы, когда на нее воздействуют с ее собственной частотой. Тибетская чаша — это не просто металлическая посудина, а идеальный резонатор. У нее, как у колокола, есть своя собственная (резонансная) частота колебаний.
Что происходит, когда мы водим стиком?
1. Создание колебаний: Трение стика о край чаши (часто с босом — специальной палочкой) передает ей энергию. Вы заставляете стенки чаши вибрировать с определенной частотой.
2. Поиск резонанса: Когда скорость и давление трения подобраны правильно, вы «ловите» резонансную частоту чаши. Чаша начинает вибрировать особенно интенсивно, издавая тот самый гудящий звук и заметно вибрируя.
3. Передача энергии воде: Эти мощные механические колебания от стенок чаши передаются воде, налитой на дно.
Вода — это жидкость, и она прекрасно передает колебания. Но что мы видим?
▪️Стоячие волны: На поверхности воды образуются не обычные волны, а стоячие волны. Это такие волны, которые осциллируют на месте. У них есть неподвижные точки (узлы) и точки с максимальной амплитудой (пучности).
▪️Кавитация: Иногда колебания настолько сильные, что в некоторых точках волны давление резко падает. Это приводит к явлению под названием кавитация — образованию крошечных пузырьков пара и газа, которые тут же схлопываются. Именно эти лопающиеся пузырьки и создают эффект бурления и «кипения», хотя вода остается холодной!
Итог в виде фактов:
〰️ Вода НЕ кипит в смысле нагревания до 100°C.
〰️ Эффект «кипения» — это холодный процесс, вызванный мощными механическими колебаниями.
〰️ Явление основано на резонансе и образовании стоячих волн.
〰️ Пузырьки — это в основном результат кавитации.
Это прекрасный пример того, как законы физики создают почти магические зрелища. #физика #резонанс #кавитация #волны #наука #physics #science #standingwave #cavitation
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤55✍34👍34❤🔥7🔥4👏2🌚2
This media is not supported in your browser
VIEW IN TELEGRAM
▪️ Специальная теория относительности. Описывает поведение объектов, которые движутся с постоянной скоростью. Теория утверждает, что время и пространство не являются абсолютно фиксированными для всех наблюдателей — они могут изменяться в зависимости от скорости объекта. Некоторые принципы специальной теории относительности:
— Принцип относительности — законы физики одинаковы для всех наблюдателей, независимо от того, находятся ли они в покое или движутся с постоянной скоростью относительно других объектов.
— Постоянство скорости света — скорость света всегда одинаковая (примерно 300 000 км/с) и не зависит от того, как быстро движется источник света или наблюдатель.
▫️ Общая теория относительности. Расширяет идеи специальной теории относительности и объясняет гравитацию. Теория утверждает, что гравитация — это не сила, а искривление пространства-времени, вызванное массой и энергией объектов. Некоторые принципы общей теории относительности:
— Эквивалентность гравитации и ускорения — невозможно отличить действие гравитации от ускоренного движения.
— Гравитационное замедление времени — часы идут медленнее вблизи массивных объектов, например, рядом с чёрной дырой время почти останавливается. #физика #теория_относительности #оптика #опыты #эксперименты #physics #видеоуроки #научные_фильмы #свет #волны #СТО #ОТО #science
👨🏻💻 Видеолекции по теории поля и СТО [Часть 1]
👨🏻💻 Видеолекции по теории поля и СТО [Часть 2]
📚 3 книги по теории относительности
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
❤38👍33✍8🔥6❤🔥4🤯3😭1🙈1
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 Сравнение скорости движения пули и скорости разрушения стекла
Когда разбивается стекло, трещина распространяется со скоростью 4828 км/ч. Такую скорость невозможно заметить обычным взглядом, только с помощью высокоскоростной съёмки. Стекло разбивается со скоростью несколько тысяч метров в секунду. Пуля, выпущенная из автомата, например, АК-47 или винтовки НАТО G3, имеет меньшую скорость – до тысячи метров в секунду. #видеоуроки #механика #разрушения #колебания #волны #физика #physics
📚 Механика разрушений [12 книг]
⛓️ ⚙️ Механика разрушения материалов (видео)
💡 Physics.Math.Code // @physics_lib
Когда разбивается стекло, трещина распространяется со скоростью 4828 км/ч. Такую скорость невозможно заметить обычным взглядом, только с помощью высокоскоростной съёмки. Стекло разбивается со скоростью несколько тысяч метров в секунду. Пуля, выпущенная из автомата, например, АК-47 или винтовки НАТО G3, имеет меньшую скорость – до тысячи метров в секунду. #видеоуроки #механика #разрушения #колебания #волны #физика #physics
📚 Механика разрушений [12 книг]
⛓️ ⚙️ Механика разрушения материалов (видео)
💡 Physics.Math.Code // @physics_lib
4👍54🔥25❤6🤯5⚡1
This media is not supported in your browser
VIEW IN TELEGRAM
Можно ли поставить дом на шары, чтобы спасти его от землетрясения? 🏠
❌ Почему простые шары не сработают? Представьте дом на четырех бильярдных шарах. Проблемы:
→ Они могут выкатиться в сторону.
→ Давление в точке контакта огромно, и шар просто продавит пол.
→ Любой порыв ветра заставит дом качаться.
✅ А что тогда сработает? Инженеры давно разработали системы, которые отделяют здание от вибраций при землетрясениях. Это как поставить дом на "амортизаторы".
1. Сейсмические изоляторы (Сейсмоизоляция):
➖Маятниковые изоляторы: Представьте не шар, а огромную "линзу", внутри которой стальной шар качается по специальной чаше. При землетрясении здание плавно "раскачивается" на этой чаше, как маятник, гася энергию.
➖Слинговые изоляторы: Здесь используются опорные конструкции, работающие на растяжение, которые позволяют зданию качаться в определенных пределах.
➖Рельсовые системы: Здание устанавливается на специальные рельсы, позволяя ему смещаться при подземных толчках.
2. Сейсмические гасители (Демпферы). Если изоляторы — это "подвеска", то демпферы — это "тормоза". Их ставят внутри здания, чтобы поглощать энергию колебаний. Бывают:
➖Вязкостные: Как гигантские амортизаторы в автомобиле.
➖Массовые (динамические гасители): Огромный шар или маятник на верхних этажах, который раскачивается в противофазе основным колебаниям и гасит их. Знаменитый Тайбэй 101 использует такой 660-тонный шар!
3. Сейсмические компенсаторы (Тросовые системы)
➖ Системы стальных тросов и растяжек, которые перераспределяют нагрузку и не дают зданию сложиться, как карточный домик.
Идея "катящейся опоры" — гениальна в своей основе, и инженеры воплотили ее в жизнь, создав сложные и надежные системы сейсмической изоляции. Благодаря им современные здания в сейсмоопасных зонах могут пережить даже очень сильные толчки, сохранив жизни людей и свою целостность. #землетрясение #строительство #инженерия #технологии #геология #архитектура #механика #разрушения #колебания #волны #физика #physics #эксперименты
💡 Physics.Math.Code // @physics_lib
❌ Почему простые шары не сработают? Представьте дом на четырех бильярдных шарах. Проблемы:
→ Они могут выкатиться в сторону.
→ Давление в точке контакта огромно, и шар просто продавит пол.
→ Любой порыв ветра заставит дом качаться.
✅ А что тогда сработает? Инженеры давно разработали системы, которые отделяют здание от вибраций при землетрясениях. Это как поставить дом на "амортизаторы".
1. Сейсмические изоляторы (Сейсмоизоляция):
➖Маятниковые изоляторы: Представьте не шар, а огромную "линзу", внутри которой стальной шар качается по специальной чаше. При землетрясении здание плавно "раскачивается" на этой чаше, как маятник, гася энергию.
➖Слинговые изоляторы: Здесь используются опорные конструкции, работающие на растяжение, которые позволяют зданию качаться в определенных пределах.
➖Рельсовые системы: Здание устанавливается на специальные рельсы, позволяя ему смещаться при подземных толчках.
2. Сейсмические гасители (Демпферы). Если изоляторы — это "подвеска", то демпферы — это "тормоза". Их ставят внутри здания, чтобы поглощать энергию колебаний. Бывают:
➖Вязкостные: Как гигантские амортизаторы в автомобиле.
➖Массовые (динамические гасители): Огромный шар или маятник на верхних этажах, который раскачивается в противофазе основным колебаниям и гасит их. Знаменитый Тайбэй 101 использует такой 660-тонный шар!
3. Сейсмические компенсаторы (Тросовые системы)
➖ Системы стальных тросов и растяжек, которые перераспределяют нагрузку и не дают зданию сложиться, как карточный домик.
Идея "катящейся опоры" — гениальна в своей основе, и инженеры воплотили ее в жизнь, создав сложные и надежные системы сейсмической изоляции. Благодаря им современные здания в сейсмоопасных зонах могут пережить даже очень сильные толчки, сохранив жизни людей и свою целостность. #землетрясение #строительство #инженерия #технологии #геология #архитектура #механика #разрушения #колебания #волны #физика #physics #эксперименты
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍44🔥18❤16😱3❤🔥1✍1🗿1