This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Фигуры Лихтенберга возникают на/в твёрдых телах, жидкостях и газах или внутри них во время электрического пробоя. Это природные явления, обладающие фрактальными свойствами. Фигуры Лихтенберга названы в честь немецкого физика Георга Кристофа Лихтенберга, который первым их открыл и изучил. Когда их впервые обнаружили, считалось, что их характерные формы могут помочь раскрыть природу положительных и отрицательных электрических «жидкостей».
В 1777 году Лихтенберг сконструировал большой электрофор для получения высокого напряжения статического электричества с помощью индукции. После разряда высоковольтной точки на поверхность изолятора он записал полученные радиальные узоры, посыпав поверхность различными порошкообразными материалами. Затем, прижав к этим узорам чистые листы бумаги, Лихтенберг смог перенести и записать эти изображения, тем самым открыв основной принцип современной ксерографии. Это открытие также стало предвестником современной науки физики плазмы. Хотя Лихтенберг изучал только двумерные (2D) фигуры, современные исследователи в области высоких напряжений изучают 2D и 3D фигуры (электрические деревья) на изолирующих материалах и внутри них.
Физика процесса: Почему ветвится?
1. Пробой и стримеры: Под действием высокого напряжения электроны с острия катода начинают «вырываться» и ускоряться. Они сталкиваются с молекулами воздуха и дерева, выбивая новые электроны. Возникает лавина — стример. Это слабосветящийся канал ионизированного газа.
2. Случайность и предопределённость: Куда побежит следующий стример? Это зависит от локальной напряжённости электрического поля. В древесине всегда есть микронеоднородности: разная плотность, влажность, следы смолы. В этих местах поле усиливается, и пробой происходит именно там.
3. Эффект «опережающей струи» (The Streamer Leader Effect): Основной канал не движется вслепую. От его кончика постоянно исходят микро-стримеры-разведчики. Тот из них, кто находит путь с наименьшим сопротивлением, становится главным направлением для всей мощи разряда. Так и рождается фрактальная, древовидная структура.
⚡️ Цвет рассказывает историю. Ярко-белые или голубоватые участки в центре ветвей — это углерод, выгоревший при сверхвысокой температуре. Более светлые, почти жёлтые края — это часто частицы металла от электродов, испарившиеся и перенесённые разрядом. По цвету можно грубо определить температуру в разных зонах разряда.
⚡️ Это не только на дереве. Первооткрыватель, Георг Кристоф Лихтенберг, в XVIII веке получал их на поверхности смолы или стекла, посыпанной порошком (серы или сурика). Электроны «застревали» в диэлектрике, создавая скрытое изображение, которое проявлялось порошком. По сути, это была первая в истории электрофотография — прабабушка ксерокса.
⚡️ L-образные фигуры и природа электричества. Лихтенберг экспериментировал с разными типами электричества: «положительным» (от смоляных палочек) и «отрицательным» (от стеклянных). Он обнаружил, что они дают разные узоры! Отрицательные (от катода) — более ветвистые и кружевные, а положительные (от анода) — более плотные, пятнистые, иногда в форме розетки. Это связано с разной подвижностью электронов и положительных ионов.
⚡️ Фигуры в теле. При ударе молнии или контакте с высоковольтной линией такие же фигуры могут на несколько часов или дней проявиться на коже человека. Это результат подкожного кровоизлияния по пути пробоя. Явление называется «кераунография» (от греч. «кераунос» — молния). Это не ожог, а жутковатый «автограф» электрического разряда, идущего по сосудам. #физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1❤27⚡23👍12🔥7❤🔥3😱3🤩1
Media is too big
VIEW IN TELEGRAM
🧲⚡️Задачка по физике [электродинамика и магнетизм] для наших подписчиков: Почему поезд приходит в движение? Откуда возникает сила, толкающая вперед?
На видео простейший поезд на магнитах (из батарейки, магнитов и медного провода)
#физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика
💡 Physics.Math.Code // @physics_lib
На видео простейший поезд на магнитах (из батарейки, магнитов и медного провода)
#физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика
💡 Physics.Math.Code // @physics_lib
2🔥30❤17👍11⚡2❤🔥1👏1🆒1
This media is not supported in your browser
VIEW IN TELEGRAM
До середины 19 века ночной город погружался во тьму, которую лишь кое-как рассеивали тусклые газовые рожки и масляные фонари. Но все изменилось с появлением настоящего «электрического солнца» — фонаря с угольной дугой. Это была первая по-настоящему эффективная форма электрического освещения, которая ослепила современников и навсегда изменила представление о ночном городе. В основе фонаря лежало явление вольтовой дуги — особого вида электрического разряда в газе.
▪️ Суть явления: Если два электрода (в нашем случае — угольных стержня) сначала коснуться, а затем немного раздвинуть, между ними продолжает течь электрический ток. Но теперь он проходит не по проводнику, а через ионизированный воздух — плазму.
▪️ Почему она светится: Электрическое поле в зазоре между электродами разгоняет свободные электроны. Эти "разогнанные" электроны сталкиваются с атомами газа (азота, кислорода) и "выбивают" из них другие электроны. Этот процесс называется ионизацией. При столкновениях часть энергии переходит в свет и колоссальное тепло. Температура в центре дуги может достигать 4000 °C — это выше температуры плавления большинства известных материалов.
🔦 Процесс горения дуги: как это работало в фонаре?
1. Зажигание: Фонарщик (или позднее автоматический механизм) сближал два угольных стержня до момента их соприкосновения. По цепи начинал течь ток.
2. Поджиг и разрыв: Концы стержней сильно разогревались из-за высокого сопротивления в точке контакта. Затем механизм немного (на несколько миллиметров) раздвигал стержни.
3. Рождение "солнца": Между раскаленными концами углей возникала та самая вольтова дуга. Воздух ионизировался, и мощный поток света и тепла устремлялся наружу. Свет был настолько ярок, что смотреть на него без защиты было больно для глаз.
4. Стабилизация и выгорание: Угольные стержни постепенно сгорали в этом адском пламени. Чтобы дуга не гасла, сложный механизм (регулятор) постоянно поддерживал идеальное расстояние между ними, медленно сдвигая стержни по мере их испарения.
Почему именно угольные стержни? Почему не медные или железные прутья? Ответ кроется в уникальных свойствах угля (графита):
1. Высокая температура плавления (возгонки): Уголь не плавится, как металл, а сразу переходит из твердого состояния в газообразное (сублимируется) при температуре около 3900 °C. Это одна из самых высоких температур среди известных тогда материалов. Металлический электрод просто расплавился бы и испарился за секунды, в то время как уголь мог относительно стабильно работать в плазме дуги.
2. Эмиссия электронов: Раскаленный уголь является отличным эмиттером электронов. При высоких температурах электроны в его атомах получают достаточно энергии, чтобы "вырваться" с поверхности и устремиться к противоположному электроду. Этот "электронный паром" — основа для поддержания стабильной дуги.
3. Хорошая электропроводность: Чистый уголь (графит) проводит электрический ток, что является обязательным условием для работы.
4. Относительная дешевизна: Угольные стержни было проще и дешевле производить в больших количествах, чем, например, стержни из тугоплавких металлов вроде вольфрама (которые стали использовать позже).
Несмотря на свою яркость, угольные дуговые фонари были неидеальны. Они требовали постоянного обслуживания (замены стержней каждые несколько часов), издавали шипение и характерный запах озона, а главное — были слишком мощными для небольших помещений. Их время пришлось на конец 19 - начало 20 века, когда они освещали главные площади, проспекты и фабрики. Но именно они проложили путь для своей более практичной и долговечной преемницы — лампы накаливания Лодыгина и Эдисона. #физика #опыты #эксперименты #наука #science #physics #электродинамика #видеоуроки #изобретения #радиофизика
⚡️ Фигуры Лихтенберга
🧲 Почему поезд приходит в движение?
📚 Фейнмановские лекции по физике [1976-1978] 💫
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
1🔥40❤26👍15⚡11
Media is too big
VIEW IN TELEGRAM
Space Power Facility (сокр. SPF) — крупнейшая в мире термальная вакуумная камера, созданная НАСА в 1969 году. Расположена на станции Плам-Брук, неподалёку от Сандаски. Станция Плам-Брук, в свою очередь, является частью Исследовательского центра Гленна, расположенного в Кливленде. Изначально предназначалась для ядерно-электрических испытаний в условиях вакуума, однако испытания были отменены, а камера законсервирована. В дальнейшем камера использовалась для проведения испытаний двигательных установок космических аппаратов и их систем. Кроме того, в данной камере проводились испытания работоспособности защитных систем приземления в условиях, приближенных к марсианским, для марсоходов Mars Pathfinder и проектах серии Mars Exploration Rover.
Размеры SPF составляют более 30 метров в диаметре и 40 метров - в высоту. По своему устройству SPF представляет собой огромный алюминиевый контейнер, заключённый в бетонный купол. Алюминиевый контейнер состоит из плотных рядов пластин из алюминиевого сплава Type 5083, подогнанных друг к другу таким образом, чтобы не пропускать воздух. #физика #механика #опыты #physics #эксперименты #наука #science #видеоуроки #кинематика #моделирование
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥57👍30❤19🤨2🆒2❤🔥1🤓1
This media is not supported in your browser
VIEW IN TELEGRAM
Визуализация окружающих звуков с помощью ферромагнитной жидкости и электромагнита. Есть предположение, что внешний звук поступает в устройство через микрофон, а затем преобразуется в электромагнитные импульсы, а переменное магнитное поле заставляет двигаться каплю ферромагнитное жидкости.
#физика #магнетизм #электродинамика #опыты #эксперименты #physics #видеоуроки #научные_фильмы #science
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍43❤19🔥15⚡4🤯4
This media is not supported in your browser
VIEW IN TELEGRAM
На видео ртутный выключатель (или ртутный геркон). Удивительное и немного алхимическое устройство, которое многие помнят из советских приборов. Как это работает? Внутри стеклянной колбочки находятся два контакта и капля ртути. Пока выключатель находится в одном положении, контакты разомкнуты. Но стоит его наклонить — капля ртути скатывается и замыкает их, замыкая цепь. Никаких щелчков, только плавное замыкание.
Концепция использования ртути для замыкания цепи известна давно, но массовое применение в таких миниатюрных стеклянных корпусах стало возможным с развитием технологии герконов (герметизированных контактов) в середине XX века. Сложно назвать одного изобретателя; это была скорее эволюция технологий, подхваченная инженерами по всему миру, включая СССР.
1. Советские игрушки и электромеханика: Легендарный набор «Знаток», различные конструкторы.
2. Автомобили: В старых «Жигулях» и «Москвичах» ртутные выключатели использовались в датчиках уровня тормозной жидкости. Жидкость опускалась — датчик наклонялся — загоралась лампочка на панели.
3. Бытовая техника: В некоторых моделях стиральных машин (например, «Вятка-автомат») они служили датчиками уровня воды.
4. Системы сигнализации: Использовались как датчики наклона для защиты ценных предметов. Стоило сдвинуть предмет — цепь замыкалась, включалась тревога.
5. Термостаты в некоторых моделях обогревателей.
Физика в действии: почему именно ртуть?
▪️ Высокая электропроводность: Ртуть — это жидкий металл, поэтому она отлично проводит ток.
▪️ Подвижность: Благодаря жидкому состоянию, она мгновенно и плавно замыкает контакты без дребезга, который характерен для обычных металлических пластин.
▪️ Поверхностное натяжение: Капля ртути не растекается, а сохраняет форму шара, что позволяет ей точно скатываться по нужной траектории.
▪️ Высокая плотность: Ртуть тяжелая, поэтому она уверенно скатывается даже при небольшом наклоне.
Почему от них отказались? Главная причина — токсичность ртути. Разбитая колбочка с парами ртути — это реальная опасность для здоровья. С развитием электроники им на смену пришли более безопасные и дешёвые твердотельные датчики: шариковые, MEMS-гироскопы и акселерометры в смартфонах, оптические датчики. #физика #магнетизм #электродинамика #опыты #эксперименты #physics #видеоуроки #электроника #science
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍105❤43🔥20⚡8🤔4🤩4❤🔥1
Речь идет о старых советских компасах, часах и других приборах (особенно военных и авиационных), циферблаты которых светились в темноте. Это свечение было не просто краской. Это была радиолюминесцентная краска на основе радия-226 (Ra-226). Того самого радия, который открыли Мария и Пьер Кюри.
Радий-226 — мощный альфа-излучатель. Его частицы бомбардировали люминофор в краске, заставляя его светиться ровным зеленым светом без подзарядки от солнца. Это было практично и надежно, но имело обратную сторону: радий распадается на радон, а сама краска со временем может трескаться и пылить, создавая потенциальную опасность при вдыхании. Но настоящую магию этого скрытого излучения можно увидеть только с помощью специального прибора — камеры Вильсона.
Камера Вильсона — это простой, но гениальный детектор частиц. В ней создается перенасыщенный пар, и когда заряженная частица (как альфа-частица от радия) пролетает через него, она оставляет за собой след из капелек, как самолет в небе.
На этом видео старый советский компас поместили в камеру Вильсона. И то, что невидимо для наших глаз, внезапно ожило! Компас буквально расцвел белыми треками — это и есть видимые следы альфа-частиц, которые испускают атомы радия из своей "безобидной" на вид светящейся краски. Для коллекционера такой предмет, находящийся в неповрежденном состоянии и снаружи, как правило, не представляет серьезной сиюминутной угрозы. Главная опасность — в вдыхании или проглатывании частичек отслоившейся краски. Но это лишний повод обращаться с такими артефактами аккуратно и хранить их в проветриваемом помещении. Наука — это инструмент, который позволяет увидеть невидимое и напомнить о сложном наследии технологического прогресса. #физика #physics #опыты #эксперименты #фотоэффект #радиоактивность #ядерная_физика #атомная_физика
📕 Радиоактивность [2013] Алиев Р.А., Калмыков С.Н.
☢️ Атом: энергия мира [2024]
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥43❤21👍10🤔5💯2🤩1
Камера Вильсона (конденсационная камера, туманная камера) — координатный детектор быстрых заряженных частиц, в котором используется способность ионов выполнять роль зародышей капель жидкости в переохлажденном перенасыщенном паре.
Для создания переохлаждённого пара используется быстрое адиабатическое расширение, сопровождающееся резким понижением температуры.
Быстрая заряженная частица, двигаясь сквозь облако перенасыщенного пара, ионизирует его. Процесс конденсации пара происходит быстрее в местах образования ионов. Как следствие, там, где пролетела заряженная частица, образуется след из капелек воды, который можно сфотографировать. Именно из-за такого вида треков камера получила свое английское название — облачная камера (англ. cloud chamber).
Камеры Вильсона обычно помещают в магнитное поле, в котором траектории заряженных частиц искривляются. Определение радиуса кривизны траектории позволяет определить удельный электрический заряд частицы, а, следовательно, идентифицировать её.
Камеру изобрел в 1912 году шотландский физик Чарльз Вильсон. За изобретение камеры Вильсон получил Нобелевскую премию по физике 1927 года. В 1948 за совершенствование камеры Вильсона и проведенные с ней исследования Нобелевскую премию получил Патрик Блэкетт. #физика #радиактивность #physics #science #ядерная_физика #видеоуроки #наука #опыты #эксперименты
💫 Тайна вещества. Научно-популярный фильм СССР 1956 г.
🔥 В СССР делали радиоизотопные термоэлектрические генераторы (РИТЭГи).
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤36👍16🔥10⚡2🥰2🤩1🙈1
Media is too big
VIEW IN TELEGRAM
Почему это работает:
➖ Разные материалы имеют разную теплоёмкость и теплопроводность. От одного и того же теплового импульса металл и пластик нагреются по-разному.
➖ В игру вступает геометрия. Даже у однородного объекта края и грани будут прогреваться иначе, чем плоские поверхности, из-за разного угла к потоку воздуха.
Итог: на монотонном тепловом фоне проступают четкие контуры и внутренняя структура предмета, которые были абсолютно невидимы до нагрева некоторое время назад. Тепловизор показывает только температуру, на его самое важное свойство — отследить изменения по отношению к другим предметам.
Факты из физики:
1. Материал. Металлические пассатижи и пластиковый стол или ручки получат одинаковую "дозу" тепла. Но металл (высокая теплопроводность) быстро распределит его по себе и отдаст столу, а пластик (низкая теплопроводность) — останется горячим дольше и будет ярко светиться.
2. Геометрия. Острый угол или ребро предмета будут обдуваться интенсивнее и прогреваться сильнее, чем плоская поверхность, обращенная к фону. Из-за этого контур объекта "проявится" даже если он сделан из одного материала.
Этот принцип лежит в основе многих методов неразрушающего контроля, когда нужно найти дефект под поверхностью.
Автор видео: @Enigma1938
🔥 Тепловой взрыв при изохорическом нагревании газа 💨
🔥 Индукционный нагрев
🪙 Монета против силы тока⚡️
#видеоуроки #physics #физика #опыты #электродинамика #электричество #магнетизм #эксперименты #научные_фильмы
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥63❤29👍22🫡4🤯3⚡1😱1
This media is not supported in your browser
VIEW IN TELEGRAM
Описание физических процессов:
1. Батарейка создает разность потенциалов (напряжение). Магнит, прикрепленный к отрицательному полюсу ("–"), служит токопроводящим основанием. Медная спираль является проводником. Ее верхний конец касается положительного полюса батарейки ("+"), а нижний, заостренный конец, — поверхности магнита. По цепи начинает течь электрический ток. Направление тока — от плюса к минусу, то есть сверху вниз по спирали.
2. Согласно закону Ампера, любой проводник с током создает вокруг себя собственное магнитное поле. В данном случае спираль ведет себя как одна виток катушки, и ее магнитное поле похоже на поле маленького плоского магнита.
3. У нас есть два магнитных поля: поле постоянного магнита и поле, создаваемое током в спирали. Эти два поля начинают взаимодействовать. С точки зрения физики, проще рассматривать это взаимодействие не как "столкновение" полей, а через действие силы Лоренца на движущиеся заряды.
4. Сила Лоренца — это сила, которая действует на заряженную частицу (в нашем случае — на электроны, но так как ток условно направлен противоположно движению электронов, мы рассматриваем условное положительное движение зарядов), движущуюся в магнитном поле. Формула силы: F = q * [v × B]
5. Рассматриваю одну из петель спирали, мы можем понять, что возникают вращающий момент. Этот момент и заставляет медную спираль вращаться вокруг своей оси. #задачи #физика #электродинамика #магнетизм #опыты #physics #эксперименты
⚡️Задачка для наших физиков
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
4👍64❤32🔥10🤯5⚡2💯2