Physics.Math.Code
153K subscribers
5.22K photos
2.2K videos
5.81K files
4.55K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

Обратная связь: @physicist_i
Download Telegram
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ Высоковольтная дуга: физика и история явления 💥

Классический демонстрационный опыт в электротехнике: вторичную обмотку высоковольтного трансформатора (например, катушки Румкорфа или Теслы, или просто повышающий трансформатор) намеренно замыкают. В результате пробоя воздуха между проводниками возникает устойчивый электрический разряд — дуга. Рассмотрим физику процесса:

1. Электрическая дуга — это не просто искра или горячий воздух. Это низкотемпературная плазма (четвертое состояние вещества), с температурой 5000–15000 °C. Проводимость дугового столба близка к проводимости металлов.

2. Дуга горит не только за счет внешнего напряжения. Ключевую роль играет термоэлектронная эмиссия: катод разогревается до таких температур, что начинает «испускать» электроны, поддерживая разряд. Кроме того, происходит ударная ионизация: электроны, ускоряясь в поле, выбивают из атомов газа другие электроны, создавая новые ионы и электроны (лавинообразный процесс).

3. Дуга является мощным источником инфразвука. Быстрое тепловое расширение воздуха в канале разряда создает ударные волны, которые человеческое ухо воспринимает как характерный гул или треск.

4. Под действием магнитных полей и конвекционных потоков плазма в дуге закручивается, формируя устойчивые вихревые структуры, что можно наблюдать при высокоскоростной съемке.

Первым, кто не просто наблюдал, а провел систематические эксперименты с электрической дугой и описал ее как физическое явление, был русский ученый Василий Владимирович Петров.

▪️ В 1802 году, за 8 лет до опытов сэра Хэмфри Дэви, В. В. Петров, собрав крупнейшую для того времени гальваническую батарею (2100 медных и цинковых элементов), получил между угольными электродами «весьма яркую беловатую дугу или пламя».
▪️ В своем фундаментальном труде «Известие о гальвани-вольтовских опытах» он не только подробно описал дугу, но и предсказал ее практическое применение для плавки металлов, освещения и восстановления оксидов.
▪️ Несмотря на приоритет Петрова, в западной научной литературе открытие часто приписывается Дэви (1808-1810 гг.), чьи работы получили более широкую известность.

Таким образом, электрическая дуга — это не просто эффектный разряд, а сложное физическое явление на стыке физики плазмы, термодинамики и акустики, впервые изученное в начале XIX века. #задачи #физика #электродинамика #магнетизм #опыты #physics #эксперименты

⚡️Задачка для наших физиков. Три вопроса для тех, кто хочет проверить своё понимание электродинамики

😖 Медная спираль (проволочная катушка) становится частью электрической цепи.

Демонстрация опыта: Генератор Ван де Граафа.

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍52🔥23205🤔2
⚡️ Катушка Тесла — резонансный трансформатор. В 1891 году Никола Тесла патентует устройство, известное как катушка Тесла. Это не просто источник зрелищных электрических разрядов, а фундаментальное изобретение, продвинувшее понимание переменных токов высокого напряжения и высоких частот. Ключевой аспект — электрический резонанс, позволяющий достигать миллионов вольт при относительно малой мощности источника. Катушка Тесла является резонансным трансформатором и работает в несколько этапов:

1. Заряд конденсатора: Источник высокого напряжения (обычно через трансформатор) заряжает первичный конденсатор.

2. Искровой разряд: Когда напряжение на конденсаторе достигает порога пробоя, он разряжается через искровой промежуток на первичную катушку. Эта катушка состоит из нескольких витков толстого провода.

3. Создание колебаний: Разряд создает в первичном контуре (конденсатор + первичная катушка) высокочастотные электромагнитные колебания.

4. Резонанс и трансформация: Вторичная катушка (тысячи витков тонкого провода) настроена в резонанс с первичным контуром. За счет электромагнитной индукции и явления резонанса во вторичной обмотке генерируется ток чрезвычайно высокого напряжения.

5. Выходной разряд: Напряжение на верхнем терминале (тороиде или сфере) достигает значений, при которых воздух ионизируется, и возникают характерные стримеры и коронные разряды.

💡 Малоизвестные факты:

▪️ Первоначальная цель. Тесла создавал катушку не для демонстраций, а как часть своей глобальной системы для беспроводной передачи энергии и информации на большие расстояния.
▪️ Патент на освещение. Одним из первых практических применений была демонстрация беспроводных газоразрядных ламп. Тесла держал их рядом с работающей катушой, и они светились, получая энергию через воздух.
▪️ Масштабы экспериментов. В своей лаборатории в Колорадо-Спрингс Тесла построил гигантскую катушку диаметром более 15 метров. Генерируемые ею искусственные молнии достигали длины 40 метров, а их раскаты были слышны за 24 километра.
▪️ Связь с рентгеновскими лучами. Катушка Тесла стала одним из первых источников для генерации рентгеновских лучей, что опередило официальное открытие Вильгельма Рентгена. Сам Тесла проводил такие эксперименты, но не опубликовал их вовремя.
▪️ Медицинный миф. В начале XX века катушки Теслы и подобные им аппараты ошибочно использовались в псевдомедицинских целях для «оздоровления» организма высокочастотными токами (явление, известное как «витализация»).
#электричество #физика #электродинамика #магнетизм #опыты #physics #эксперименты

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥4643👍96🌚3
📈 Изохорный (изохорический) процесс (от др.-греч. ἴσος — «равный» и χώρος — «место») — термодинамический изопроцесс, который происходит при постоянном объёме. Для осуществления изохорного процесса в газе или жидкости достаточно нагревать или охлаждать вещество в сосуде неизменного объёма. При изохорическом процессе давление идеального газа прямо пропорционально его температуре (см. Закон Шарля). В реальных газах закон Шарля выполняется приближённо.

Наиболее часто первые исследования изохорного процесса связывают с Гийомом Амонтоном. В своей работе «Парижские мемуары» в 1702 году он описал поведение газа в фиксированном объёме внутри так называемого «воздушного термометра». Жидкость в нём находится в равновесии под воздействием давления газа в резервуаре и атмосферным давлением. При нагревании давление в резервуаре увеличивается, и жидкость вытесняется в выступающую трубку. Зависимость между температурой и давлением была установлена в виде: p₁/p₂ = (1 + α⋅t₁) / (1 + α⋅t₂) .

В 1801 году Джон Дальтон в двух своих эссе опубликовал эксперимент, в котором установил, что все газы и пары, исследованные им при постоянном давлении, одинаково расширяются при изменении температуры, если начальная и конечная температура одинакова. Данный закон получил название закона Гей-Люссака, так как Гей-Люссак вскоре провёл самостоятельные эксперименты и подтвердил одинаковое расширение различных газов, причём получив практически тот же самый коэффициент, что и Дальтон. Впоследствии он же объединил свой закон с законом Бойля — Мариотта, что позволило описывать в том числе и изохорный процесс.

🔥Практическое применение: При идеальном цикле Отто, который приближённо воспроизведён в бензиновом двигателе внутреннего сгорания, такты 2—3 и 4—1 являются изохорными процессами. Работа, совершаемая на выходе двигателя, равна разности работ, которую произведёт газ над поршнем во время третьего такта (то есть рабочего хода), и работы, которую затрачивает поршень на сжатие газа во время второго такта. Так как в двигателе, работающем по циклу Отто используется система принудительного зажигания смеси, то происходит сжатие газа в 7—12 раз.
В цикле Стирлинга также присутствуют два изохорных такта. Для его осуществления в двигателе Стирлинга добавлен регенератор. Газ, проходя через наполнитель в одну сторону, отдаёт тепло от рабочего тела к регенератору, а при движении в другую сторону отдаёт его обратно рабочему телу. Идеальный цикл Стирлинга достигает обратимости и тех же величин КПД что и цикл Карно. Изохорный процесс — также процесс, протекающий в автоклавах и пьезометрах. #физика #термодинамика #опыты #мкт #теплота #нагрев #лекции #physics #science

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4126🔥17🥰2🤯2
Media is too big
VIEW IN TELEGRAM
⚙️ Крутящий Момент vs Мощность - физика процессов

В спорах о характеристиках двигателя часто сталкиваются два понятия: крутящий момент и мощность. Разберем их фундаментальные отличия без упрощений и мифов.

▪️1. Физическая сущность

Крутящий момент (M, Н∙м) — это сила, умноженная на плечо рычага. В двигателе — это сила, с которой кривошипно-шатунный механизм проворачивает коленчатый вал.
Момент — это "рывковая" сила двигателя. Чем он выше, тем сильнее двигатель "тянет" на низких и средних оборотах.

Мощность (N, л.с. или кВт) — это работа, совершаемая в единицу времени. Показывает, какой объем работы двигатель может выполнить за секунду.
Мощность — это "скорость" выполнения работы. Чем она выше, тем большую скорость может развить автомобиль.

▪️2. Математическая связь

Мощность — это производная от работы момента. Классическая формула: N = M × ω = M × (2π × n) / 60 [Вт] = ( M × n × π ) / 30 000 [кВт] ≈ [ M (Н∙м) × n (об/мин) ] / 9549
Если нужна мощность в лошадиных силах (л.с.), учитываем, что 1 кВт ≈ 1.3596 л.с.
N — мощность (кВт),
ω — угловая скорость (рад/с),
M — крутящий момент (Н∙м),
n — частота вращения коленвала (об/мин).
Мощность не существует без момента. Она является его функцией и напрямую зависит от того, какой момент двигатель развивает на конкретных оборотах.

▪️3. Что важнее на практике?

Некорректно противопоставлять эти величины. Они две стороны одной медали. Однако, для понимания поведения автомобиля:

Высокий момент в широком диапазоне оборотов (полка момента) — определяет динамику разгона и эластичность двигателя. Автомобиль с высоким моментом на "низах" будет уверенно трогаться и обгонять без постоянных переключений передач. Крутящий момент — это сила, которая создает ускорение.
Максимальная мощность — определяет потенциальную максимальную скорость автомобиля. Чтобы разогнаться до высоких скоростей, нужна способность совершать большую работу каждую секунду, то есть высокая мощность. Мощность — это результат применения этой силы с определенной частотой (оборотами).

В современных двигателях важен не пик момента или мощности, а их кривые и ширина рабочего диапазона. Идеал — ровная "полка" момента на низких и средних оборотах, которая обеспечивает высокую мощность на верхах. #техника #конструктор #механика #динамика #опыты #авто #двигатели

⚙️ Тест 9 типов подвесок [ЛегоТехникс]

🖥 Конструирование подводной лодки на радиоуправлении из LEGO

⚙️ Редуктор из LEGO с огромным передаточным числом

⚙️ Моделирование решения задачи передвижения автомобилей по песчаному грунту с помощью конструктора LEGO

⛔️ 7 препятствий и 5 LEGO-роботов, которые умеют шагать

⚙️ LEGO® Technic Строительство мостов: Задача на 100 кг!

🎻 Когда Lego играет на гитаре лучше, чем ты...

⚙️ Lego MindStorm

👾 Что будет, если надолго оставить инженера с конструктором Lego

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
58👍43🔥19❤‍🔥6🤨2🗿21
Media is too big
VIEW IN TELEGRAM
💡Галогенная лампа накаливания мощностью 20 кВт ⚡️

В контексте кинопроизводства, для создания эффекта естественного солнечного света в павильоне или для ночных съёмок, используются источники света колоссальной мощности. Один из таких инструментов — галогенная лампа накаливания мощностью 20 000 Вт. С физической точки зрения, это устройство — демонстрация фундаментальных законов в экстремальных условиях. Рассмотрим самые интересные факты из физики:

🔸 Закон Джоуля-Ленца. Вся работа этой лампы основана на этом законе. При прохождении электрического тока через вольфрамовую нить её кристаллическая решётка оказывает мощное сопротивление направленному движению электронов. Кинетическая энергия электронов преобразуется в тепловую. При токе в ~91 А (для сети 220 В) и сопротивлении нити накала в несколько Ом, выделяется мощность P = I² * R = 20 000 Вт. Это сопоставимо с мощностью небольшого электрокамина или промышленного обогревателя.

🔸 Температура накала. Для получения видимого излучения вольфрамовая нить должна быть раскалена до температур порядка 3000 К (≈2727 °C). При таких температурах вольфрам активно испаряется, что ограничивает срок службы. Галогенный цикл (наличие паров галогенов, например, йода или брома, в колбе) позволяет частично решить эту проблему, возвращая испарившиеся атомы вольфрама обратно на нить.

🔸 Электрическая прочность. Работа с таким напряжением и, в особенности, током, требует специальных высоковольтных и высокотоковых соединений. Используются керамические патроны и массивные медные контакты, чтобы предотвратить пробой воздуха, нагрев и оплавление соединительных элементов.

🔸Излучение абсолютно чёрного тела. Раскалённая вольфрамовая нить является близким аналогом модели абсолютно чёрного тела. Её спектр излучения — непрерывный и определяется исключительно температурой. Это обеспечивает высокий индекс цветопередачи (CRI ≈100), что критически важно для кинематографии, так как все цвета объектов передаются без искажений.

🔸Смещение Вина. Согласно закону смещения Вина, длина волны, на которую приходится максимум излучения, равна λ_max = b / T, где b — постоянная Вина, T — температура в Кельвинах. Для температуры ~3000 К максимум излучения находится в ближней инфракрасной области. Лишь около 10-15% потребляемой мощности преобразуется в видимый свет, остальное — тепловое (ИК) излучение. Именно поэтому такие осветительные приборы требуют мощных систем жидкостного или воздушного охлаждения.

🔸Световой поток. Для лампы такой мощности световой поток может достигать ~400 000 люмен и более. Для сравнения: стандартная бытовая лампа на 60 Вт дает около 700 лм. Такой поток позволяет эффективно осветить крупные объекты или симулировать дневной свет на большом расстоянии.

Лампа мощностью 20 кВт — это не просто «очень яркая лампочка». Это сложное электротермическое устройство, представляющее собой компромисс между эффективностью, качеством света и колоссальным энергопотреблением, оправданным в рамках требований высокобюджетного кинопроизводства. На видео галогенная лампа мощностью 20 кВт, используемая для съемок крупномасштабных фильмов. #задачи #физика #электродинамика #магнетизм #опыты

▪️Катушка Тесла

▪️ Высоковольтная дуга: физика и история явления
▪️ Демонстрация опыта: Генератор Ван де Граафа.
▪️ Медная спираль
▪️ Задачка для наших физиков. Три вопроса для тех, кто хочет проверить своё понимание электродинамики

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
41🔥3024👍13🆒3😨2
⚙️ Нескучная механика: об устройстве катушки спиннинга

Почему при вращении ручки катушка не просто крутится, а ещё и приподнимается? Сердце любой безынерционной катушки — это механизм «червячной» передачи (worm drive). Он состоит из двух ключевых деталей:
1. «Червь» — стержень со спиральной проточкой, похожий на резьбу.
2. Шестерня (или кулачок), которая с ним сцеплена.

Когда вы вращаете ручку, главная шестерня передаёт вращение на «червяк». Он не вращается вокруг своей оси, а остаётся неподвижным. Вместо этого его спиральная проточка заставляет двигаться обойму с роликом лесоукладывателя. Проще говоря: Вращательное движение ручки преобразуется в возвратно-поступательное движение обоймы вдоль шпули. Это и есть та самая магия, которая равномерно укладывает леску.

А почему возникает «подпрыгивание»? Это «подпрыгивание» или легкое приподнимание катушки при быстром вращении — не брак и не поломка, а проявление гироскопического эффекта. Любое вращающееся тело (в нашем случае — ротор катушки с лесоукладывателем) стремится сохранить положение своей оси вращения. Это тот же принцип, что и у детского волчка или колеса велосипеда. Когда вы начинаете быстро крутить ручку:
1. Ротор катушки раскручивается с большой скоростью.
2. Он превращается в гироскоп.
3. Когда вы ведёте удилищем или просто держите его под углом, на ось вращения ротора действует сила (момент силы), пытающаяся её наклонить.
4. Гироскоп (наш ротор) сопротивляется этому и реагирует не так, как невращающееся тело. Он начинает прецессировать — то есть его ось описывает конус.

Именно эта прецессия и ощущается нами как лёгкие толчки или "подрагивание" катушки в руке. Она особенно заметна на лёгких и скоростных моделях (с высоким передаточным числом), где ротор раскручивается очень быстро. «Подпрыгивание» катушки — это гироскопический эффект, неизбежное следствие быстрого вращения массивных частей. Это признак исправно работающего механизма, а не его недостаток. #техника #конструктор #механика #динамика #опыты #изобретения

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6432🔥175🤯4
Media is too big
VIEW IN TELEGRAM
⚙️ Помните этот пост на канале? Наверняка, у многих возникли вопросы, которые они постеснялись задать в комментариях. Поэтому сегодня мы поговорим о том, почему такие конструкции НЕ работают в реальной жизни. Разумеется, база рассуждений будет физика. Причем нам нам поможет элементарная физика. В последнее время в сети снова всплыли видео с «революционными» вечными двигателями. Устройство обычно такое: тяжелый маховик, а к его валу подключены несколько пружин, которые, якобы, своим распрямлением постоянно раскручивают систему. Выглядит захватывающе, но это обман. Давайте разберемся, почему это не работает. А пока задам вам вопрос: с чего мы взяли, что энергия, запасенная в сжатой пружине, бесконечна?

Вся магия вечных двигателей рушится на фундаментальном уравнении вращательного движения: J · ε = M , где
J — момент инерции маховика (его «нежелание» раскручиваться или инертность. Это аналог массы во втором законе Ньютона, из которого и выводится закон выше).
ε (эпсилон) — угловое ускорение (оно должно быть отлично от нуля, если двигатель раскручивается или оно может быть равным 0, если система вышла на постоянную скорость вращения).
M — суммарный момент сил, приложенных к системе.

Вот в чём подвох: в такой системе пружины создают силы, направленные в разные стороны. Когда одна пружина пытается раскрутить маховик по часовой стрелке, другая в этот же момент пытается крутить его против. Просто сделайте рисунок с торца такого двигателя. Получится, что алгебраическая сумма моментов всех сил (n сил для n пружин) равна нулю. Подставляем это в наше уравнение: J · ε = 0. Момент инерции J — величина не нулевая (маховик-то есть). Единственный способ выполнить это равенство — сделать угловое ускорение ε равным нулю. Вывод: система не может раскрутиться сама по себе.

Но в чем же подвох на видео? Всё довольно банально:
1. Скрытый источник энергии. Часто в кадр не попадает электромоторчик, спрятанный внутри вала или основания, который и раскручивает маховик.
2. Однократный запуск. Устройство раскручивают вручную, снимают фазу «последнего затухающего колебания», а потом видео зацикливают, создавая иллюзию непрерывного движения.
3. Хитрые ракурсы. Камера не показывает полный цикл работы всех пружин, чтобы зритель не увидел момент, когда они мешают, а не помогают движению.

Как бы вы не хотели изобрести вечный двигатель, вам стоит помнить, что закон сохранения (изменения) энергии работает всегда. Если есть диссипативные силы, то полная энергия системы убывает. И вы не сможете сделать вечный двигатель без пополнения энергией извне (но тогда это уже не вечный двигатель). #задачи #опыты #электродинамика #физика #видеоуроки #fun #physics #science #наука #двигатели #вечныйдвигатель

🔔 Оксфордский электрический звонок: самый долгий научный эксперимент в мире, длящийся с 1840 года

⚡️ Вечный электромагнитный двигатель

😨 Запрещенный генератор свободной энергии с использованием метода якоря

⚡️ Генератор Постоянного Движения

🔧 Картонный вентилятор

🧲 Магнитный двигатель

💦 Фонтан Герона

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4030🔥9🤯3😱2
⚡️ Электрический водяной мостик 💧

Если в стаканы поместить электроды и подать на них высокое напряжение, то деионизированная вода образует стабильный цилиндрический мост между двумя стаканами. Толщина мостика зависит от величины напряжения и, соответственно, проходящего тока.

Когда между двумя стаканами с водой создаётся разность потенциалов около 10 кВ, между стаканами может возникнуть тонкий водяной мостик. Силы поверхностного натяжения удерживают его на весу, а силы электрического давления не дают мостику распасться на отдельные капли. #gif #опыты #видеоуроки #физика #научные_фильмы #physics

💡 Physics.Math.Code // @physics_lib
👍55🔥171232
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ Опыт Ампера: Сила взаимодействия параллельных токов

В 1820 году Андре-Мари Ампер, вдохновлённый открытием Эрстеда (связь электричества и магнетизма), провёл серию фундаментальных экспериментов. В ходе них он установил количественные законы взаимодействия электрических токов.

Суть опыта: Два тонких параллельных проводника, по которым протекает электрический ток, способны механически взаимодействовать:
▪️ Токи, текущие в одном направлении, — притягиваются.
▪️Токи, текущие в противоположных направлениях, — отталкиваются.

Именно Ампер первым количественно исследовал и описал это явление, лежащее в основе определения единицы силы тока — Ампера в системе СИ. Малоизвестные факты:

1. Магнитное поле — относительный эффект. С точки зрения специальной теории относительности, сила притяжения между двумя параллельными токами одного направления может быть интерпретирована как следствие лоренцева сокращения длины. При движении положительных ионов в проводнике для движущихся электронов второго провода расстояние между ионами кажется меньшим, что приводит к возникновению эффективного избыточного положительного заряда и кулоновского притяжения.

2. Сила огромна в масштабах Вселенной. Закон Ампера является фундаментальным для астрофизики. Например, в солнечных вспышках и молниях токи достигают сотен тысяч ампер, и силы Ампера, стремясь их сжать (эффект «пинча»), играют ключевую роль в динамике плазмы.

3. Определение эталона. Один Ампер — это сила неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенным в вакууме на расстоянии 1 метр друг от друга, вызвал бы на каждом участке проводника длиной 1 метр силу взаимодействия, равную 2×10⁻⁷ ньютона.

⚡️ Задача для подписчиков: следует ли из данных опытов, что большие токи в дуговом разряде или молнии обладают самофокусировкой и уменьшают токовый канал? Если да, то как оценить предельную толщину канала молнии?

#электричество #физика #электродинамика #магнетизм #опыты #physics #эксперименты

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥29👍1912🤔64🤯3
☄️ Взаимодействие раскалённого металла с водой. Когда возможен взрыв? Вопрос, кажущийся простым, таит в себе серьёзные опасности, актуальные для металлургической и химической промышленности. Рассмотрим два варианта:

▪️ 1. Единичный раскалённый металлический шарик

При контакте с водой происходит интенсивная теплопередача. Металл быстро отдаёт тепло, вызывая кипение воды в непосредственном контакте с ним. Образуется слой пара (паровая рубашка), который изолирует шарик от жидкости, препятствуя мгновенному теплообмену. Шарик будет остывать, а вода — бурно кипеть. Взрыва не произойдёт.

▪️2. Большой объём жидкого металла

Ситуация кардинально меняется. Массивный расплав не успевает быстро остыть. При его попадании в воду происходит не просто кипение, а стремительное парообразование по всей поверхности контакта. Пар образуется с такой скоростью, что буквально разрывает жидкую среду, вызывая мощный паровой взрыв (взрыв парового облака). Энергия выделяется за счёт почти мгновенного перехода воды в газообразное состояние и её резкого расширения.

▪️3. Образование гремучей смеси и химический взрыв

Это тоже возможно, но при определённых условиях. Ключевой фактор — химический состав металла.
▫️Если металл является высокоактивным (например, щелочные или щёлочноземельные металлы: натрий, калий, кальций), то при высокой температуре он не просто окисляется, а напрямую реагирует с водой: 2Na + 2H₂O → 2NaOH + H₂ + Q (тепло)
▫️Выделяющийся водород (H₂) смешивается с кислородом воздуха. Образовавшаяся гремучая смесь воспламеняется от раскалённого металла или искры, что приводит к объёмному химическому взрыву.

Условия для взрыва:
1. Металл должен быть химически активным (восстановителем).
2. Температура должна быть достаточной для инициации бурной реакции.
3. Концентрация водорода в воздухе должна находиться в пределах воспламеняемости (примерно 4 - 75 % по объёму).

✍🏻 Эффект Лейденфроста в промышленных масштабах: При контакте капли расплава с водой может возникать устойчивая паровая прослойка. Взрыв происходит, когда эта прослойка внезапно коллапсирует, обеспечивая мгновенный и огромный по площади контакт горячей поверхности с водой. Этот процесс называется тепловым взаимодействием быстрого фазового перехода.

✍🏻 Каталитическая роль оксидной плёнки: На поверхности многих расплавов (например, алюминия) есть оксидная плёнка. Она может препятствовать прямому контакту и реакции с водой. Однако при взрывном парообразовании плёнка разрывается, обнажая чистый, химически активный металл.

✍🏻 Распад воды на элементы: При экстремально высоких температурах (свыше 2500°C, что достижимо для некоторых металлов и термитной реакции) возможен не столько химический синтез, сколько термическая диссоциация воды на атомарный водород и кислород, что резко увеличивает взрывоопасность среды.

Взрыв при попадании расплава в воду — это реальная и крайне опасная комбинация физического (парового) и, для активных металлов, химического взрыва. Основные риски связаны не с малыми объёмами, а с промышленными инцидентами, например, при разливе жидкого чугуна или алюминия. #термодинамика #мкт #химия #физика #наука #магнетизм #опыты #physics #эксперименты

💡 Physics.Math.Code // @physics_lib
🔥3934👍132😱1