#jupyter_notebook #deep_learning #machine_learning #python #pytorch
This course, "深入浅出PyTorch" (Thorough PyTorch), is designed to help you learn PyTorch from basics to advanced levels. It covers everything from installing PyTorch, understanding tensors and automatic differentiation, to building and training models, and even deploying them. The course is divided into several chapters, each focusing on different aspects of PyTorch, such as data loading, model construction, loss functions, optimizers, and visualization.
The benefit to you is that you will gain a comprehensive understanding of PyTorch, which is a powerful tool for deep learning. You will learn through both theoretical explanations and practical exercises, including hands-on projects like fashion classification and fruit classification. This will help you develop your programming skills and ability to solve real-world problems using deep learning algorithms. Additionally, the course includes video tutorials and a community-driven approach to learning, making it easier and more engaging.
https://github.com/datawhalechina/thorough-pytorch
This course, "深入浅出PyTorch" (Thorough PyTorch), is designed to help you learn PyTorch from basics to advanced levels. It covers everything from installing PyTorch, understanding tensors and automatic differentiation, to building and training models, and even deploying them. The course is divided into several chapters, each focusing on different aspects of PyTorch, such as data loading, model construction, loss functions, optimizers, and visualization.
The benefit to you is that you will gain a comprehensive understanding of PyTorch, which is a powerful tool for deep learning. You will learn through both theoretical explanations and practical exercises, including hands-on projects like fashion classification and fruit classification. This will help you develop your programming skills and ability to solve real-world problems using deep learning algorithms. Additionally, the course includes video tutorials and a community-driven approach to learning, making it easier and more engaging.
https://github.com/datawhalechina/thorough-pytorch
GitHub
GitHub - datawhalechina/thorough-pytorch: PyTorch入门教程,在线阅读地址:https://datawhalechina.github.io/thorough-pytorch/
PyTorch入门教程,在线阅读地址:https://datawhalechina.github.io/thorough-pytorch/ - datawhalechina/thorough-pytorch
#python #annotation #annotation_tool #annotations #boundingbox #computer_vision #computer_vision_annotation #dataset #deep_learning #image_annotation #image_classification #image_labeling #image_labelling_tool #imagenet #labeling #labeling_tool #object_detection #pytorch #semantic_segmentation #tensorflow #video_annotation
CVAT is a powerful tool for annotating videos and images, especially useful for computer vision projects. It helps developers and companies annotate data quickly and efficiently. You can use CVAT online for free or subscribe for more features like unlimited data and integrations with other tools. It also offers a self-hosted option with enterprise support. CVAT supports many annotation formats and has automatic labeling options to speed up your work. It's widely used by many teams worldwide, making it a reliable choice for your data annotation needs.
https://github.com/cvat-ai/cvat
CVAT is a powerful tool for annotating videos and images, especially useful for computer vision projects. It helps developers and companies annotate data quickly and efficiently. You can use CVAT online for free or subscribe for more features like unlimited data and integrations with other tools. It also offers a self-hosted option with enterprise support. CVAT supports many annotation formats and has automatic labeling options to speed up your work. It's widely used by many teams worldwide, making it a reliable choice for your data annotation needs.
https://github.com/cvat-ai/cvat
GitHub
GitHub - cvat-ai/cvat: Annotate better with CVAT, the industry-leading data engine for machine learning. Used and trusted by teams…
Annotate better with CVAT, the industry-leading data engine for machine learning. Used and trusted by teams at any scale, for data of any scale. - cvat-ai/cvat
#python #deep_learning #geometric_deep_learning #graph_convolutional_networks #graph_neural_networks #pytorch
PyG (PyTorch Geometric) is a library that makes it easy to work with Graph Neural Networks (GNNs) using PyTorch. Here’s why it’s beneficial You can start training a GNN model with just 10-20 lines of code, especially if you're already familiar with PyTorch.
- **Comprehensive Models** The library supports large-scale graphs, dynamic graphs, and heterogeneous graphs, making it versatile for various applications.
- **Scalability** It provides extensive documentation, tutorials, and examples to help you get started quickly.
Overall, PyG simplifies the process of working with GNNs, making it a powerful tool for machine learning on graph-structured data.
https://github.com/pyg-team/pytorch_geometric
PyG (PyTorch Geometric) is a library that makes it easy to work with Graph Neural Networks (GNNs) using PyTorch. Here’s why it’s beneficial You can start training a GNN model with just 10-20 lines of code, especially if you're already familiar with PyTorch.
- **Comprehensive Models** The library supports large-scale graphs, dynamic graphs, and heterogeneous graphs, making it versatile for various applications.
- **Scalability** It provides extensive documentation, tutorials, and examples to help you get started quickly.
Overall, PyG simplifies the process of working with GNNs, making it a powerful tool for machine learning on graph-structured data.
https://github.com/pyg-team/pytorch_geometric
GitHub
GitHub - pyg-team/pytorch_geometric: Graph Neural Network Library for PyTorch
Graph Neural Network Library for PyTorch. Contribute to pyg-team/pytorch_geometric development by creating an account on GitHub.
#python #deep_learning #glow_tts #hifigan #melgan #multi_speaker_tts #python #pytorch #speaker_encoder #speaker_encodings #speech #speech_synthesis #tacotron #text_to_speech #tts #tts_model #vocoder #voice_cloning #voice_conversion #voice_synthesis
The new version of TTS (Text-to-Speech) from Coqui.ai, called TTSv2, is now available with several improvements. It supports 16 languages and has better performance overall. You can fine-tune the models using the provided code and examples. The TTS system can now stream audio with less than 200ms latency, making it very responsive. Additionally, you can use over 1,100 Fairseq models and new features like voice cloning and voice conversion. This update also includes faster inference with the Tortoise model and support for multiple speakers and languages. These enhancements make it easier and more efficient to generate high-quality speech from text.
https://github.com/coqui-ai/TTS
The new version of TTS (Text-to-Speech) from Coqui.ai, called TTSv2, is now available with several improvements. It supports 16 languages and has better performance overall. You can fine-tune the models using the provided code and examples. The TTS system can now stream audio with less than 200ms latency, making it very responsive. Additionally, you can use over 1,100 Fairseq models and new features like voice cloning and voice conversion. This update also includes faster inference with the Tortoise model and support for multiple speakers and languages. These enhancements make it easier and more efficient to generate high-quality speech from text.
https://github.com/coqui-ai/TTS
GitHub
GitHub - coqui-ai/TTS: 🐸💬 - a deep learning toolkit for Text-to-Speech, battle-tested in research and production
🐸💬 - a deep learning toolkit for Text-to-Speech, battle-tested in research and production - coqui-ai/TTS
#python #fno #fourier_neural_operator #neural_operator #neural_operators #partial_differential_equations #pde #pytorch #tensor_methods #tensorization #tensorly #uno
The `neuraloperator` library is a powerful tool for learning neural operators in PyTorch. It allows you to learn mappings between function spaces, which is different from regular neural networks. This library is useful because it makes your trained models work with data of any resolution, meaning you don't have to worry about the size of your data. You can easily install it using `pip install neuraloperator` and start training operators right away. The library also offers efficient models like the Tucker Tensorized FNO, which reduces the number of parameters needed, making it faster and more efficient. This helps you train and use complex models more effectively.
https://github.com/neuraloperator/neuraloperator
The `neuraloperator` library is a powerful tool for learning neural operators in PyTorch. It allows you to learn mappings between function spaces, which is different from regular neural networks. This library is useful because it makes your trained models work with data of any resolution, meaning you don't have to worry about the size of your data. You can easily install it using `pip install neuraloperator` and start training operators right away. The library also offers efficient models like the Tucker Tensorized FNO, which reduces the number of parameters needed, making it faster and more efficient. This helps you train and use complex models more effectively.
https://github.com/neuraloperator/neuraloperator
GitHub
GitHub - neuraloperator/neuraloperator: Learning in infinite dimension with neural operators.
Learning in infinite dimension with neural operators. - neuraloperator/neuraloperator
#python #cuda #deepseek #deepseek_llm #deepseek_v3 #inference #llama #llama2 #llama3 #llama3_1 #llava #llm #llm_serving #moe #pytorch #transformer #vlm
SGLang is a tool that makes working with large language models and vision language models much faster and more manageable. It has a fast backend runtime that optimizes model performance with features like prefix caching, continuous batching, and quantization. The frontend language is flexible and easy to use, allowing for complex tasks like chained generation calls and multi-modal inputs. SGLang supports many different models and has an active community behind it. This means you can get your models running quickly and efficiently, saving time and resources. Additionally, the extensive documentation and community support make it easier to get started and resolve any issues.
https://github.com/sgl-project/sglang
SGLang is a tool that makes working with large language models and vision language models much faster and more manageable. It has a fast backend runtime that optimizes model performance with features like prefix caching, continuous batching, and quantization. The frontend language is flexible and easy to use, allowing for complex tasks like chained generation calls and multi-modal inputs. SGLang supports many different models and has an active community behind it. This means you can get your models running quickly and efficiently, saving time and resources. Additionally, the extensive documentation and community support make it easier to get started and resolve any issues.
https://github.com/sgl-project/sglang
GitHub
GitHub - sgl-project/sglang: SGLang is a fast serving framework for large language models and vision language models.
SGLang is a fast serving framework for large language models and vision language models. - sgl-project/sglang
#python #gpu #llm #pytorch #transformers
The `ipex-llm` library is a powerful tool for accelerating Large Language Models (LLMs) on Intel GPUs, NPUs, and CPUs. It integrates seamlessly with popular frameworks like HuggingFace transformers, LangChain, LlamaIndex, and more. Here are the key benefits `ipex-llm` optimizes LLM performance with advanced quantization techniques (FP8, FP6, FP4, INT4) and self-speculative decoding, leading to significant speedups.
- **Wide Model Support** It works on various Intel hardware such as Arc GPUs, Core Ultra NPUs, and CPUs, making it versatile for different setups.
- **Easy Integration** Detailed quickstart guides, code examples, and tutorials help users get started quickly.
Overall, `ipex-llm` enhances the performance and usability of LLMs on Intel hardware, making it a valuable tool for developers and researchers.
https://github.com/intel/ipex-llm
The `ipex-llm` library is a powerful tool for accelerating Large Language Models (LLMs) on Intel GPUs, NPUs, and CPUs. It integrates seamlessly with popular frameworks like HuggingFace transformers, LangChain, LlamaIndex, and more. Here are the key benefits `ipex-llm` optimizes LLM performance with advanced quantization techniques (FP8, FP6, FP4, INT4) and self-speculative decoding, leading to significant speedups.
- **Wide Model Support** It works on various Intel hardware such as Arc GPUs, Core Ultra NPUs, and CPUs, making it versatile for different setups.
- **Easy Integration** Detailed quickstart guides, code examples, and tutorials help users get started quickly.
Overall, `ipex-llm` enhances the performance and usability of LLMs on Intel hardware, making it a valuable tool for developers and researchers.
https://github.com/intel/ipex-llm
GitHub
GitHub - intel/ipex-llm: Accelerate local LLM inference and finetuning (LLaMA, Mistral, ChatGLM, Qwen, DeepSeek, Mixtral, Gemma…
Accelerate local LLM inference and finetuning (LLaMA, Mistral, ChatGLM, Qwen, DeepSeek, Mixtral, Gemma, Phi, MiniCPM, Qwen-VL, MiniCPM-V, etc.) on Intel XPU (e.g., local PC with iGPU and NPU, discr...
#python #asr #automatic_speech_recognition #conformer #e2e_models #production_ready #pytorch #speech_recognition #transformer #whisper
WeNet is a powerful tool for speech recognition that helps turn spoken words into text. It's designed to be easy to use and works well in real-world situations, making it great for businesses and developers. WeNet provides accurate results on many public datasets and is lightweight, meaning it doesn't require a lot of resources to run. This makes it beneficial for users who need reliable speech-to-text functionality without complex setup or maintenance.
https://github.com/wenet-e2e/wenet
WeNet is a powerful tool for speech recognition that helps turn spoken words into text. It's designed to be easy to use and works well in real-world situations, making it great for businesses and developers. WeNet provides accurate results on many public datasets and is lightweight, meaning it doesn't require a lot of resources to run. This makes it beneficial for users who need reliable speech-to-text functionality without complex setup or maintenance.
https://github.com/wenet-e2e/wenet
GitHub
GitHub - wenet-e2e/wenet: Production First and Production Ready End-to-End Speech Recognition Toolkit
Production First and Production Ready End-to-End Speech Recognition Toolkit - wenet-e2e/wenet
#cplusplus #cuda #cutlass #gpu #pytorch
Flux is a library that helps speed up machine learning on GPUs by overlapping communication and computation tasks. It supports various parallelisms in model training and inference, making it compatible with PyTorch and different Nvidia GPU architectures. This means you can train models faster because Flux combines the steps of sending data between GPUs (communication) and doing calculations (computation), allowing them to happen at the same time. This overlap reduces overall training time, which is beneficial for users working with large or complex models.
https://github.com/bytedance/flux
Flux is a library that helps speed up machine learning on GPUs by overlapping communication and computation tasks. It supports various parallelisms in model training and inference, making it compatible with PyTorch and different Nvidia GPU architectures. This means you can train models faster because Flux combines the steps of sending data between GPUs (communication) and doing calculations (computation), allowing them to happen at the same time. This overlap reduces overall training time, which is beneficial for users working with large or complex models.
https://github.com/bytedance/flux
GitHub
GitHub - bytedance/flux: A fast communication-overlapping library for tensor/expert parallelism on GPUs.
A fast communication-overlapping library for tensor/expert parallelism on GPUs. - bytedance/flux
#jupyter_notebook #cnn #colab #colab_notebook #computer_vision #deep_learning #deep_neural_networks #fourier #fourier_convolutions #fourier_transform #gan #generative_adversarial_network #generative_adversarial_networks #high_resolution #image_inpainting #inpainting #inpainting_algorithm #inpainting_methods #pytorch
LaMa is a powerful tool for removing objects from images. It uses special techniques called Fourier Convolutions, which help it understand the whole image at once. This makes it very good at filling in large areas that are missing. LaMa can even work well with high-resolution images, even if it was trained on smaller ones. This means you can use it to fix photos where objects are in the way, making them look natural and complete again.
https://github.com/advimman/lama
LaMa is a powerful tool for removing objects from images. It uses special techniques called Fourier Convolutions, which help it understand the whole image at once. This makes it very good at filling in large areas that are missing. LaMa can even work well with high-resolution images, even if it was trained on smaller ones. This means you can use it to fix photos where objects are in the way, making them look natural and complete again.
https://github.com/advimman/lama
GitHub
GitHub - advimman/lama: 🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022
🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022 - advimman/lama
#python #deep_learning #intel #machine_learning #neural_network #pytorch #quantization
Intel Extension for PyTorch boosts the speed of PyTorch on Intel hardware, including both CPUs and GPUs, by using special features like AVX-512, AMX, and XMX for faster calculations[5][2][4]. It supports many popular large language models (LLMs) such as Llama, Qwen, Phi, and DeepSeek, offering optimizations for different data types and easy GPU acceleration. This means you can run advanced AI models much faster and more efficiently on your Intel computer, with simple setup and support for both ready-made and custom models.
https://github.com/intel/intel-extension-for-pytorch
Intel Extension for PyTorch boosts the speed of PyTorch on Intel hardware, including both CPUs and GPUs, by using special features like AVX-512, AMX, and XMX for faster calculations[5][2][4]. It supports many popular large language models (LLMs) such as Llama, Qwen, Phi, and DeepSeek, offering optimizations for different data types and easy GPU acceleration. This means you can run advanced AI models much faster and more efficiently on your Intel computer, with simple setup and support for both ready-made and custom models.
https://github.com/intel/intel-extension-for-pytorch
GitHub
GitHub - intel/intel-extension-for-pytorch: A Python package for extending the official PyTorch that can easily obtain performance…
A Python package for extending the official PyTorch that can easily obtain performance on Intel platform - intel/intel-extension-for-pytorch
#jupyter_notebook #ai #artificial_intelligence #chatgpt #deep_learning #from_scratch #gpt #language_model #large_language_models #llm #machine_learning #python #pytorch #transformer
You can learn how to build your own large language model (LLM) like GPT from scratch with clear, step-by-step guidance, including coding, training, and fine-tuning, all explained with examples and diagrams. This approach mirrors how big models like ChatGPT are made but is designed to run on a regular laptop without special hardware. You also get access to code for loading pretrained models and fine-tuning them for tasks like text classification or instruction following. This helps you deeply understand how LLMs work inside and lets you create your own functional AI assistant, gaining practical skills in AI development[1][2][3][4].
https://github.com/rasbt/LLMs-from-scratch
You can learn how to build your own large language model (LLM) like GPT from scratch with clear, step-by-step guidance, including coding, training, and fine-tuning, all explained with examples and diagrams. This approach mirrors how big models like ChatGPT are made but is designed to run on a regular laptop without special hardware. You also get access to code for loading pretrained models and fine-tuning them for tasks like text classification or instruction following. This helps you deeply understand how LLMs work inside and lets you create your own functional AI assistant, gaining practical skills in AI development[1][2][3][4].
https://github.com/rasbt/LLMs-from-scratch
GitHub
GitHub - rasbt/LLMs-from-scratch: Implement a ChatGPT-like LLM in PyTorch from scratch, step by step
Implement a ChatGPT-like LLM in PyTorch from scratch, step by step - rasbt/LLMs-from-scratch
#other #automl #chatgpt #data_analysis #data_science #data_visualization #data_visualizations #deep_learning #gpt #gpt_3 #jax #keras #machine_learning #ml #nlp #python #pytorch #scikit_learn #tensorflow #transformer
This is a comprehensive, regularly updated list of 920 top open-source Python machine learning libraries, organized into 34 categories like frameworks, data visualization, NLP, image processing, and more. Each project is ranked by quality using GitHub and package manager metrics, helping you find the best tools for your needs. Popular libraries like TensorFlow, PyTorch, scikit-learn, and Hugging Face transformers are included, along with specialized ones for time series, reinforcement learning, and model interpretability. This resource saves you time by guiding you to high-quality, actively maintained libraries for building, optimizing, and deploying machine learning models efficiently.
https://github.com/ml-tooling/best-of-ml-python
This is a comprehensive, regularly updated list of 920 top open-source Python machine learning libraries, organized into 34 categories like frameworks, data visualization, NLP, image processing, and more. Each project is ranked by quality using GitHub and package manager metrics, helping you find the best tools for your needs. Popular libraries like TensorFlow, PyTorch, scikit-learn, and Hugging Face transformers are included, along with specialized ones for time series, reinforcement learning, and model interpretability. This resource saves you time by guiding you to high-quality, actively maintained libraries for building, optimizing, and deploying machine learning models efficiently.
https://github.com/ml-tooling/best-of-ml-python
GitHub
GitHub - lukasmasuch/best-of-ml-python: 🏆 A ranked list of awesome machine learning Python libraries. Updated weekly.
🏆 A ranked list of awesome machine learning Python libraries. Updated weekly. - lukasmasuch/best-of-ml-python
#jupyter_notebook #darknet #pytorch #scaled_yolov4 #yolor #yolov3 #yolov4 #yolov7
YOLOv7 is a powerful tool for detecting objects in images and videos. It is fast, accurate, and can work well on devices with limited power, making it useful for real-time applications like self-driving cars and surveillance systems. YOLOv7 uses advanced techniques like Feature Pyramid Networks to detect objects of different sizes and can handle complex scenes with overlapping objects. This makes it beneficial for users who need quick and precise object detection in various environments.
https://github.com/WongKinYiu/yolov7
YOLOv7 is a powerful tool for detecting objects in images and videos. It is fast, accurate, and can work well on devices with limited power, making it useful for real-time applications like self-driving cars and surveillance systems. YOLOv7 uses advanced techniques like Feature Pyramid Networks to detect objects of different sizes and can handle complex scenes with overlapping objects. This makes it beneficial for users who need quick and precise object detection in various environments.
https://github.com/WongKinYiu/yolov7
GitHub
GitHub - WongKinYiu/yolov7: Implementation of paper - YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time…
Implementation of paper - YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors - WongKinYiu/yolov7
#typescript #ai #chatgpt #docsgpt #hacktoberfest #information_retrieval #language_model #llm #machine_learning #natural_language_processing #python #pytorch #rag #react #semantic_search #transformers #web_app
DocsGPT is an open-source AI tool that helps you quickly find accurate answers from many types of documents and web sources without errors. It supports formats like PDF, DOCX, images, and integrates with websites, APIs, and chat platforms like Discord and Telegram. You can deploy it privately for security, customize it to fit your brand, and connect it to tools for advanced actions. This means you save time searching for information, get reliable answers with sources, and improve productivity whether you’re a developer, support team, or business user. It’s easy to set up and scales well for many users[2][3][4].
https://github.com/arc53/DocsGPT
DocsGPT is an open-source AI tool that helps you quickly find accurate answers from many types of documents and web sources without errors. It supports formats like PDF, DOCX, images, and integrates with websites, APIs, and chat platforms like Discord and Telegram. You can deploy it privately for security, customize it to fit your brand, and connect it to tools for advanced actions. This means you save time searching for information, get reliable answers with sources, and improve productivity whether you’re a developer, support team, or business user. It’s easy to set up and scales well for many users[2][3][4].
https://github.com/arc53/DocsGPT
GitHub
GitHub - arc53/DocsGPT: Private AI platform for agents, assistants and enterprise search. Built-in Agent Builder, Deep research…
Private AI platform for agents, assistants and enterprise search. Built-in Agent Builder, Deep research, Document analysis, Multi-model support, and API connectivity for agents. - arc53/DocsGPT
❤1
#python #deep_learning #diffusion #flax #flux #hacktoberfest #image_generation #image2image #image2video #jax #latent_diffusion_models #pytorch #score_based_generative_modeling #stable_diffusion #stable_diffusion_diffusers #text2image #text2video #video2video
The Hugging Face Diffusers library is a powerful and easy-to-use tool for generating images, audio, and 3D molecular structures using advanced diffusion models. It offers ready-to-use pretrained models and flexible components like pipelines, schedulers, and model building blocks, allowing you to quickly create or customize your own diffusion-based projects. Installation is simple via pip or conda, and you can generate high-quality outputs with just a few lines of code. This library benefits you by making cutting-edge AI generation accessible, customizable, and efficient, whether you want to run models or train your own[1][2][5].
https://github.com/huggingface/diffusers
The Hugging Face Diffusers library is a powerful and easy-to-use tool for generating images, audio, and 3D molecular structures using advanced diffusion models. It offers ready-to-use pretrained models and flexible components like pipelines, schedulers, and model building blocks, allowing you to quickly create or customize your own diffusion-based projects. Installation is simple via pip or conda, and you can generate high-quality outputs with just a few lines of code. This library benefits you by making cutting-edge AI generation accessible, customizable, and efficient, whether you want to run models or train your own[1][2][5].
https://github.com/huggingface/diffusers
GitHub
GitHub - huggingface/diffusers: 🤗 Diffusers: State-of-the-art diffusion models for image, video, and audio generation in PyTorch.
🤗 Diffusers: State-of-the-art diffusion models for image, video, and audio generation in PyTorch. - huggingface/diffusers
#jupyter_notebook #chatgpt #finance #fingpt #fintech #large_language_models #machine_learning #nlp #prompt_engineering #pytorch #reinforcement_learning #robo_advisor #sentiment_analysis #technical_analysis
FinGPT is an open-source AI tool designed specifically for finance, helping you analyze financial news, predict stock prices, and get personalized investment advice quickly and affordably. Unlike costly models like BloombergGPT, FinGPT can be updated frequently with new data at a low cost, making it more accessible and timely. It uses advanced techniques like reinforcement learning from human feedback to tailor advice to your preferences, such as risk tolerance. You can use FinGPT for tasks like sentiment analysis, robo-advising, fraud detection, and portfolio optimization, helping you make smarter financial decisions with up-to-date insights.
https://github.com/AI4Finance-Foundation/FinGPT
FinGPT is an open-source AI tool designed specifically for finance, helping you analyze financial news, predict stock prices, and get personalized investment advice quickly and affordably. Unlike costly models like BloombergGPT, FinGPT can be updated frequently with new data at a low cost, making it more accessible and timely. It uses advanced techniques like reinforcement learning from human feedback to tailor advice to your preferences, such as risk tolerance. You can use FinGPT for tasks like sentiment analysis, robo-advising, fraud detection, and portfolio optimization, helping you make smarter financial decisions with up-to-date insights.
https://github.com/AI4Finance-Foundation/FinGPT
GitHub
GitHub - AI4Finance-Foundation/FinGPT: FinGPT: Open-Source Financial Large Language Models! Revolutionize 🔥 We release the…
FinGPT: Open-Source Financial Large Language Models! Revolutionize 🔥 We release the trained model on HuggingFace. - AI4Finance-Foundation/FinGPT
#python #deep_learning #inference #llm #nlp #pytorch #transformer
Nano-vLLM is a small, fast, and easy-to-understand tool for running large language models offline. It matches the speed of bigger systems like vLLM but uses only about 1,200 lines of clean Python code, making it simple to read and modify. It includes smart features like prefix caching and tensor parallelism to boost performance. You can install it easily and run models like Qwen3-0.6B on your own GPU. This tool is great if you want fast, efficient AI inference without complex setups, ideal for learning, research, or small deployments on limited hardware.
https://github.com/GeeeekExplorer/nano-vllm
Nano-vLLM is a small, fast, and easy-to-understand tool for running large language models offline. It matches the speed of bigger systems like vLLM but uses only about 1,200 lines of clean Python code, making it simple to read and modify. It includes smart features like prefix caching and tensor parallelism to boost performance. You can install it easily and run models like Qwen3-0.6B on your own GPU. This tool is great if you want fast, efficient AI inference without complex setups, ideal for learning, research, or small deployments on limited hardware.
https://github.com/GeeeekExplorer/nano-vllm
GitHub
GitHub - GeeeekExplorer/nano-vllm: Nano vLLM
Nano vLLM. Contribute to GeeeekExplorer/nano-vllm development by creating an account on GitHub.
#jupyter_notebook #deep_learning #pytorch
You can learn PyTorch effectively in 20 days with a friendly, well-structured guide designed for those who already know some machine learning basics and have used Keras, TensorFlow, or PyTorch before. The book breaks down PyTorch concepts from easy to hard, with clear examples and practical code you can use right away. It includes a daily plan requiring 30 minutes to 2 hours, covering modeling, core concepts, APIs, and even advanced topics like GPU training and recommendation systems. This approach makes mastering PyTorch easier and faster, helping you build strong skills for deep learning projects and real applications.
https://github.com/lyhue1991/eat_pytorch_in_20_days
You can learn PyTorch effectively in 20 days with a friendly, well-structured guide designed for those who already know some machine learning basics and have used Keras, TensorFlow, or PyTorch before. The book breaks down PyTorch concepts from easy to hard, with clear examples and practical code you can use right away. It includes a daily plan requiring 30 minutes to 2 hours, covering modeling, core concepts, APIs, and even advanced topics like GPU training and recommendation systems. This approach makes mastering PyTorch easier and faster, helping you build strong skills for deep learning projects and real applications.
https://github.com/lyhue1991/eat_pytorch_in_20_days
GitHub
GitHub - lyhue1991/eat_pytorch_in_20_days: Pytorch🍊🍉 is delicious, just eat it! 😋😋
Pytorch🍊🍉 is delicious, just eat it! 😋😋. Contribute to lyhue1991/eat_pytorch_in_20_days development by creating an account on GitHub.
#python #audio_generation #diffusion #image_generation #inference #model_serving #multimodal #pytorch #transformer #video_generation
vLLM-Omni is a free, open-source tool that makes serving AI models for text, images, videos, and audio fast, easy, and cheap. It builds on vLLM for top speed using smart memory tricks, overlapping tasks, and flexible resource sharing across GPUs. You get 2x higher throughput, 35% less delay, and simple setup with Hugging Face models via OpenAI API—perfect for building quick multi-modal apps like chatbots or media generators without high costs.
https://github.com/vllm-project/vllm-omni
vLLM-Omni is a free, open-source tool that makes serving AI models for text, images, videos, and audio fast, easy, and cheap. It builds on vLLM for top speed using smart memory tricks, overlapping tasks, and flexible resource sharing across GPUs. You get 2x higher throughput, 35% less delay, and simple setup with Hugging Face models via OpenAI API—perfect for building quick multi-modal apps like chatbots or media generators without high costs.
https://github.com/vllm-project/vllm-omni
GitHub
GitHub - vllm-project/vllm-omni: A framework for efficient model inference with omni-modality models
A framework for efficient model inference with omni-modality models - vllm-project/vllm-omni