#other #awesome #awesome_list #classification #dataset #deep_learning #forecasting #image_classification #machine_learning #multi_label_classification #series_forecasting
https://github.com/NirantK/awesome-project-ideas
https://github.com/NirantK/awesome-project-ideas
GitHub
GitHub - NirantK/awesome-project-ideas: Curated list of Machine Learning, NLP, Vision, Recommender Systems Project Ideas
Curated list of Machine Learning, NLP, Vision, Recommender Systems Project Ideas - NirantK/awesome-project-ideas
#python #artificial_intelligence #attention_mechanism #computer_vision #image_classification #transformers
https://github.com/lucidrains/vit-pytorch
https://github.com/lucidrains/vit-pytorch
GitHub
GitHub - lucidrains/vit-pytorch: Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with…
Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch - lucidrains/vit-pytorch
#python #ade20k #image_classification #imagenet #mask_rcnn #mscoco #object_detection #semantic_segmentation #swin_transformer
https://github.com/microsoft/Swin-Transformer
https://github.com/microsoft/Swin-Transformer
GitHub
GitHub - microsoft/Swin-Transformer: This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer…
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows". - microsoft/Swin-Transformer
#python #text_classification #text #transformer #vision #image_classification #feedforward_neural_network #language_model #fourier_transform #fnet
https://github.com/rishikksh20/FNet-pytorch
https://github.com/rishikksh20/FNet-pytorch
GitHub
GitHub - rishikksh20/FNet-pytorch: Unofficial implementation of Google's FNet: Mixing Tokens with Fourier Transforms
Unofficial implementation of Google's FNet: Mixing Tokens with Fourier Transforms - GitHub - rishikksh20/FNet-pytorch: Unofficial implementation of Google's FNet: Mixing Tokens with...
#python #nlp #sparsity #tensorflow #keras #pytorch #deep_learning_algorithms #image_classification #deep_learning_library #pruning #object_detection #automl #computer_vision_algorithms #onnx #deep_learning_models #sparsification #pruning_algorithms #smaller_models #model_sparsification #sparsification_recipes #recipe_driven_approaches
https://github.com/neuralmagic/sparseml
https://github.com/neuralmagic/sparseml
GitHub
GitHub - neuralmagic/sparseml: Libraries for applying sparsification recipes to neural networks with a few lines of code, enabling…
Libraries for applying sparsification recipes to neural networks with a few lines of code, enabling faster and smaller models - neuralmagic/sparseml
#python #image_classification #image_recognition #pretrained_models #knowledge_distillation #product_recognition #autoaugment #cutmix #randaugment #gridmask #deit #repvgg #swin_transformer #image_retrieval_system
https://github.com/PaddlePaddle/PaddleClas
https://github.com/PaddlePaddle/PaddleClas
GitHub
GitHub - PaddlePaddle/PaddleClas: A treasure chest for visual classification and recognition powered by PaddlePaddle
A treasure chest for visual classification and recognition powered by PaddlePaddle - PaddlePaddle/PaddleClas
#typescript #annotation #annotation_tool #annotations #boundingbox #computer_vision #computer_vision_annotation #dataset #deep_learning #image_annotation #image_classification #image_labeling #image_labelling_tool #imagenet #labeling #labeling_tool #semantic_segmentation #tensorflow #video_annotation
https://github.com/openvinotoolkit/cvat
https://github.com/openvinotoolkit/cvat
GitHub
GitHub - cvat-ai/cvat: Annotate better with CVAT, the industry-leading data engine for machine learning. Used and trusted by teams…
Annotate better with CVAT, the industry-leading data engine for machine learning. Used and trusted by teams at any scale, for data of any scale. - cvat-ai/cvat
#other #classification #convolutional_neural_networks #dataset #datasets #deep_learning #deep_neural_networks #image_classification #keras #machine_learning #python #pytorch #remote_sensing #satellite_data #satellite_imagery #satellite_images #sentinel #tensorflow
https://github.com/robmarkcole/satellite-image-deep-learning
https://github.com/robmarkcole/satellite-image-deep-learning
GitHub
GitHub - satellite-image-deep-learning/techniques: Techniques for deep learning with satellite & aerial imagery
Techniques for deep learning with satellite & aerial imagery - satellite-image-deep-learning/techniques
#python #action_recognition #anomaly_detection #audio_processing #background_removal #crowd_counting #deep_learning #face_detection #face_recognition #fashion_ai #gan #hand_detection #image_classification #image_segmentation #machine_learning #neural_network #object_detection #object_recognition #object_tracking #pose_estimation
https://github.com/axinc-ai/ailia-models
https://github.com/axinc-ai/ailia-models
GitHub
GitHub - axinc-ai/ailia-models: The collection of pre-trained, state-of-the-art AI models for ailia SDK
The collection of pre-trained, state-of-the-art AI models for ailia SDK - axinc-ai/ailia-models
#python #bumble #efficientnet #image_classification #tensorflow
https://github.com/bumble-tech/private-detector
https://github.com/bumble-tech/private-detector
GitHub
GitHub - bumble-tech/private-detector: Bumble's Private Detector - a pretrained model for detecting lewd images
Bumble's Private Detector - a pretrained model for detecting lewd images - GitHub - bumble-tech/private-detector: Bumble's Private Detector - a pretrained model for detecting lewd images
#jupyter_notebook #computer_vision #deep_learning #deep_neural_networks #image_classification #image_segmentation #object_detection #pytorch #tutorial #yolov5 #yolov6 #yolov7
https://github.com/roboflow-ai/notebooks
https://github.com/roboflow-ai/notebooks
GitHub
GitHub - roboflow/notebooks: A collection of tutorials on state-of-the-art computer vision models and techniques. Explore everything…
A collection of tutorials on state-of-the-art computer vision models and techniques. Explore everything from foundational architectures like ResNet to cutting-edge models like YOLO11, RT-DETR, SAM ...
#python #deep_learning #image_classification #imagenet #mobilenet #pytorch #regnet #resnet #resnext #senet #shufflenet #swin_transformer
https://github.com/open-mmlab/mmclassification
https://github.com/open-mmlab/mmclassification
GitHub
GitHub - open-mmlab/mmpretrain: OpenMMLab Pre-training Toolbox and Benchmark
OpenMMLab Pre-training Toolbox and Benchmark. Contribute to open-mmlab/mmpretrain development by creating an account on GitHub.
#jupyter_notebook #computer_vision #deep_learning #image_classification #imagenet #neural_network #object_detection #pretrained_models #pretrained_weights #pytorch #semantic_segmentation #transfer_learning
https://github.com/Deci-AI/super-gradients
https://github.com/Deci-AI/super-gradients
GitHub
GitHub - Deci-AI/super-gradients: Easily train or fine-tune SOTA computer vision models with one open source training library.…
Easily train or fine-tune SOTA computer vision models with one open source training library. The home of Yolo-NAS. - Deci-AI/super-gradients
#cplusplus #ai #behaviour_analysis #cv #deep_learning #deepstream #face_recognition #feature_extraction #gstreamer #image_classification #image_enhancement #image_segmentation #license_plate_recognition #object_detection #opencv #reid #similarity_search #video_analysis #video_processing
https://github.com/sherlockchou86/VideoPipe
https://github.com/sherlockchou86/VideoPipe
GitHub
GitHub - sherlockchou86/VideoPipe: A cross-platform video structuring (video analysis) framework. If you find it helpful, please…
A cross-platform video structuring (video analysis) framework. If you find it helpful, please give it a star: ) 跨平台的视频结构化(视频分析)框架,觉得有帮助的请给个星星 : ) - GitHub - sherlockchou86/VideoPipe: A cross-plat...
👍1🗿1
#python #deep_learning #hub #image_classification #instance_segmentation #machine_learning #obb #object_detection #pose #pytorch #tracking #ultralytics #yolo #yolo_world #yolo_world_v2 #yolo11 #yolov10 #yolov8 #yolov9
Ultralytics YOLO11 is a state-of-the-art model for object detection, segmentation, classification, and pose estimation. It is fast, accurate, and easy to use, making it suitable for various tasks. You can install it using pip (`pip install ultralytics`) and use it via the command line or Python scripts. The model comes with extensive documentation and community support through Discord, Reddit, and forums. Additionally, Ultralytics offers integrations with other AI platforms like Roboflow and ClearML to enhance your workflow. This tool benefits users by providing high-performance AI capabilities with minimal setup and robust community resources for assistance.
https://github.com/ultralytics/ultralytics
Ultralytics YOLO11 is a state-of-the-art model for object detection, segmentation, classification, and pose estimation. It is fast, accurate, and easy to use, making it suitable for various tasks. You can install it using pip (`pip install ultralytics`) and use it via the command line or Python scripts. The model comes with extensive documentation and community support through Discord, Reddit, and forums. Additionally, Ultralytics offers integrations with other AI platforms like Roboflow and ClearML to enhance your workflow. This tool benefits users by providing high-performance AI capabilities with minimal setup and robust community resources for assistance.
https://github.com/ultralytics/ultralytics
GitHub
GitHub - ultralytics/ultralytics: Ultralytics YOLO 🚀
Ultralytics YOLO 🚀. Contribute to ultralytics/ultralytics development by creating an account on GitHub.
#javascript #annotation #annotation_tool #annotations #boundingbox #computer_vision #data_labeling #dataset #datasets #deep_learning #image_annotation #image_classification #image_labeling #image_labelling_tool #label_studio #labeling #labeling_tool #mlops #semantic_segmentation #text_annotation #yolo
Label Studio is a free, open-source tool that helps you label different types of data like images, audio, text, videos, and more. It has a simple and user-friendly interface that makes it easy to prepare or improve your data for machine learning models. You can customize it to fit your needs and export labeled data in various formats. It supports multi-user labeling, multiple projects, and integration with machine learning models for pre-labeling and active learning. You can install it locally using Docker, pip, or other methods, or deploy it in cloud services like Heroku or Google Cloud Platform. This tool streamlines your data labeling process and helps you create more accurate ML models.
https://github.com/HumanSignal/label-studio
Label Studio is a free, open-source tool that helps you label different types of data like images, audio, text, videos, and more. It has a simple and user-friendly interface that makes it easy to prepare or improve your data for machine learning models. You can customize it to fit your needs and export labeled data in various formats. It supports multi-user labeling, multiple projects, and integration with machine learning models for pre-labeling and active learning. You can install it locally using Docker, pip, or other methods, or deploy it in cloud services like Heroku or Google Cloud Platform. This tool streamlines your data labeling process and helps you create more accurate ML models.
https://github.com/HumanSignal/label-studio
GitHub
GitHub - HumanSignal/label-studio: Label Studio is a multi-type data labeling and annotation tool with standardized output format
Label Studio is a multi-type data labeling and annotation tool with standardized output format - HumanSignal/label-studio
#python #augmix #convnext #distributed_training #dual_path_networks #efficientnet #image_classification #imagenet #maxvit #mixnet #mobile_deep_learning #mobilenet_v2 #mobilenetv3 #nfnets #normalization_free_training #pretrained_models #pretrained_weights #pytorch #randaugment #resnet #vision_transformer_models
PyTorch Image Models (`timm`) is a comprehensive library that includes a wide range of state-of-the-art image models, layers, utilities, optimizers, and training scripts. Here are the key benefits `timm` offers over 300 pre-trained models from various families like Vision Transformers, ResNets, EfficientNets, and more, allowing you to choose the best model for your task.
- **Pre-trained Weights** You can easily extract features at different levels of the network using `features_only=True` and `out_indices`, making it versatile for various applications.
- **Optimizers and Schedulers** It provides several augmentation techniques like AutoAugment, RandAugment, and regularization methods like DropPath and DropBlock to enhance model performance.
- **Reference Training Scripts**: Included are high-performance training, validation, and inference scripts that support multiple GPUs and mixed-precision training.
Overall, `timm` simplifies the process of working with deep learning models for image tasks by providing a unified interface and extensive tools for training and evaluation.
https://github.com/huggingface/pytorch-image-models
PyTorch Image Models (`timm`) is a comprehensive library that includes a wide range of state-of-the-art image models, layers, utilities, optimizers, and training scripts. Here are the key benefits `timm` offers over 300 pre-trained models from various families like Vision Transformers, ResNets, EfficientNets, and more, allowing you to choose the best model for your task.
- **Pre-trained Weights** You can easily extract features at different levels of the network using `features_only=True` and `out_indices`, making it versatile for various applications.
- **Optimizers and Schedulers** It provides several augmentation techniques like AutoAugment, RandAugment, and regularization methods like DropPath and DropBlock to enhance model performance.
- **Reference Training Scripts**: Included are high-performance training, validation, and inference scripts that support multiple GPUs and mixed-precision training.
Overall, `timm` simplifies the process of working with deep learning models for image tasks by providing a unified interface and extensive tools for training and evaluation.
https://github.com/huggingface/pytorch-image-models
GitHub
GitHub - huggingface/pytorch-image-models: The largest collection of PyTorch image encoders / backbones. Including train, eval…
The largest collection of PyTorch image encoders / backbones. Including train, eval, inference, export scripts, and pretrained weights -- ResNet, ResNeXT, EfficientNet, NFNet, Vision Transformer (V...
#python #ade20k #image_classification #imagenet #mask_rcnn #mscoco #object_detection #semantic_segmentation #swin_transformer
The Swin Transformer is a powerful tool for computer vision tasks like image classification, object detection, semantic segmentation, and video recognition. It uses a hierarchical structure with shifted windows to efficiently process images, making it more efficient than other models. Here are the key benefits Swin Transformer achieves state-of-the-art results in various tasks such as COCO object detection, ADE20K semantic segmentation, and ImageNet classification.
- **Efficiency** The model supports multiple tasks including image classification, object detection, instance segmentation, semantic segmentation, and video action recognition.
- **Improved Speed** The model is integrated into popular frameworks like Hugging Face Spaces and PaddleClas, making it easy to use and deploy.
Overall, the Swin Transformer offers high accuracy, efficiency, and versatility, making it a valuable tool for various computer vision applications.
https://github.com/microsoft/Swin-Transformer
The Swin Transformer is a powerful tool for computer vision tasks like image classification, object detection, semantic segmentation, and video recognition. It uses a hierarchical structure with shifted windows to efficiently process images, making it more efficient than other models. Here are the key benefits Swin Transformer achieves state-of-the-art results in various tasks such as COCO object detection, ADE20K semantic segmentation, and ImageNet classification.
- **Efficiency** The model supports multiple tasks including image classification, object detection, instance segmentation, semantic segmentation, and video action recognition.
- **Improved Speed** The model is integrated into popular frameworks like Hugging Face Spaces and PaddleClas, making it easy to use and deploy.
Overall, the Swin Transformer offers high accuracy, efficiency, and versatility, making it a valuable tool for various computer vision applications.
https://github.com/microsoft/Swin-Transformer
GitHub
GitHub - microsoft/Swin-Transformer: This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer…
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows". - microsoft/Swin-Transformer
#python #artificial_intelligence #attention_mechanism #computer_vision #image_classification #transformers
This text describes a comprehensive implementation of Vision Transformers (ViT) in PyTorch, offering various models and techniques for image classification. Here’s the key information and benefits**
- The repository provides multiple ViT variants, including the original ViT, Simple ViT, NaViT, Deep ViT, CaiT, Token-to-Token ViT, CCT, Cross ViT, PiT, LeViT, CvT, Twins SVT, RegionViT, CrossFormer, ScalableViT, SepViT, MaxViT, NesT, MobileViT, XCiT, and others.
- Each variant introduces different architectural improvements such as efficient attention mechanisms, multi-scale processing, and innovative embedding techniques.
- The implementation includes pre-trained models and supports various tasks like masked image modeling, distillation, and self-supervised learning.
**Benefits** Users can choose from a wide range of ViT models tailored for different needs, such as efficiency, performance, or specific tasks.
- **Performance** Some models, like NaViT and ScalableViT, are designed to be more efficient in terms of computational resources and training time.
- **Ease of Use** The inclusion of various research ideas and techniques allows users to explore new approaches in vision transformer research.
Overall, this repository offers a powerful toolkit for anyone working with vision transformers, providing both practical solutions and cutting-edge research opportunities.
https://github.com/lucidrains/vit-pytorch
This text describes a comprehensive implementation of Vision Transformers (ViT) in PyTorch, offering various models and techniques for image classification. Here’s the key information and benefits**
- The repository provides multiple ViT variants, including the original ViT, Simple ViT, NaViT, Deep ViT, CaiT, Token-to-Token ViT, CCT, Cross ViT, PiT, LeViT, CvT, Twins SVT, RegionViT, CrossFormer, ScalableViT, SepViT, MaxViT, NesT, MobileViT, XCiT, and others.
- Each variant introduces different architectural improvements such as efficient attention mechanisms, multi-scale processing, and innovative embedding techniques.
- The implementation includes pre-trained models and supports various tasks like masked image modeling, distillation, and self-supervised learning.
**Benefits** Users can choose from a wide range of ViT models tailored for different needs, such as efficiency, performance, or specific tasks.
- **Performance** Some models, like NaViT and ScalableViT, are designed to be more efficient in terms of computational resources and training time.
- **Ease of Use** The inclusion of various research ideas and techniques allows users to explore new approaches in vision transformer research.
Overall, this repository offers a powerful toolkit for anyone working with vision transformers, providing both practical solutions and cutting-edge research opportunities.
https://github.com/lucidrains/vit-pytorch
GitHub
GitHub - lucidrains/vit-pytorch: Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with…
Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch - lucidrains/vit-pytorch
👍1
#python #annotation #annotation_tool #annotations #boundingbox #computer_vision #computer_vision_annotation #dataset #deep_learning #image_annotation #image_classification #image_labeling #image_labelling_tool #imagenet #labeling #labeling_tool #object_detection #pytorch #semantic_segmentation #tensorflow #video_annotation
CVAT is a powerful tool for annotating videos and images, especially useful for computer vision projects. It helps developers and companies annotate data quickly and efficiently. You can use CVAT online for free or subscribe for more features like unlimited data and integrations with other tools. It also offers a self-hosted option with enterprise support. CVAT supports many annotation formats and has automatic labeling options to speed up your work. It's widely used by many teams worldwide, making it a reliable choice for your data annotation needs.
https://github.com/cvat-ai/cvat
CVAT is a powerful tool for annotating videos and images, especially useful for computer vision projects. It helps developers and companies annotate data quickly and efficiently. You can use CVAT online for free or subscribe for more features like unlimited data and integrations with other tools. It also offers a self-hosted option with enterprise support. CVAT supports many annotation formats and has automatic labeling options to speed up your work. It's widely used by many teams worldwide, making it a reliable choice for your data annotation needs.
https://github.com/cvat-ai/cvat
GitHub
GitHub - cvat-ai/cvat: Annotate better with CVAT, the industry-leading data engine for machine learning. Used and trusted by teams…
Annotate better with CVAT, the industry-leading data engine for machine learning. Used and trusted by teams at any scale, for data of any scale. - cvat-ai/cvat