GitHub Trends
10.1K subscribers
15.3K links
See what the GitHub community is most excited about today.

A bot automatically fetches new repositories from https://github.com/trending and sends them to the channel.

Author and maintainer: https://github.com/katursis
Download Telegram
#swift #inference #ios #macos #pretrained_models #speech_recognition #swift #transformers #visionos #watchos #whisper

WhisperKit is a tool that helps your Apple devices recognize speech from audio files or live recordings using OpenAI's Whisper model. It works locally on your device, which means it doesn't need internet connection once set up. To use it, you can add WhisperKit to your Swift project easily through the Swift Package Manager or install a command-line version using Homebrew. This tool is beneficial because it allows you to transcribe audio quickly and efficiently right on your device, making it useful for various applications like voice assistants or transcription services.

https://github.com/argmaxinc/WhisperKit
#python #bert #deep_learning #flax #hacktoberfest #jax #language_model #language_models #machine_learning #model_hub #natural_language_processing #nlp #nlp_library #pretrained_models #python #pytorch #pytorch_transformers #seq2seq #speech_recognition #tensorflow #transformer

The Hugging Face Transformers library provides thousands of pretrained models for various tasks like text, image, and audio processing. These models can be used for tasks such as text classification, image detection, speech recognition, and more. The library supports popular deep learning frameworks like JAX, PyTorch, and TensorFlow, making it easy to switch between them.

The benefit to the user is that you can quickly download and use these pretrained models with just a few lines of code, saving time and computational resources. You can also fine-tune these models on your own datasets and share them with the community. Additionally, the library offers a simple `pipeline` API for immediate use on different inputs, making it user-friendly for both researchers and practitioners. This helps in reducing compute costs and carbon footprint while enabling high-performance results across various machine learning tasks.

https://github.com/huggingface/transformers
#jupyter_notebook #computer_vision #deep_learning #drug_discovery #forecasting #large_language_models #mxnet #nlp #paddlepaddle #pytorch #recommender_systems #speech_recognition #speech_synthesis #tensorflow #tensorflow2 #translation

This repository provides top-quality deep learning examples that are easy to train and deploy on NVIDIA GPUs. It includes a wide range of models for computer vision, natural language processing, recommender systems, speech to text, and more. These examples are updated monthly and come in Docker containers with the latest NVIDIA software, ensuring the best performance. The models support multiple GPUs and nodes, and some are optimized for Tensor Cores, which can significantly speed up training. This makes it easier for users to achieve high accuracy and performance in their deep learning projects.

https://github.com/NVIDIA/DeepLearningExamples
#python #asr #audio #audio_processing #deep_learning #huggingface #language_model #pytorch #speaker_diarization #speaker_recognition #speaker_verification #speech_enhancement #speech_processing #speech_recognition #speech_separation #speech_to_text #speech_toolkit #speechrecognition #spoken_language_understanding #transformers #voice_recognition

SpeechBrain is an open-source toolkit that helps you quickly develop Conversational AI technologies, such as speech assistants, chatbots, and language models. It uses PyTorch and offers many pre-trained models and tutorials to make it easy to get started. You can train models for various tasks like speech recognition, speaker recognition, and text processing with just a few lines of code. SpeechBrain also supports GPU training, dynamic batching, and integration with HuggingFace models, making it powerful and efficient. This toolkit is beneficial because it simplifies the development process, provides extensive documentation and tutorials, and is highly customizable, making it ideal for research, prototyping, and educational purposes.

https://github.com/speechbrain/speechbrain
#python #asr #automatic_speech_recognition #conformer #e2e_models #production_ready #pytorch #speech_recognition #transformer #whisper

WeNet is a powerful tool for speech recognition that helps turn spoken words into text. It's designed to be easy to use and works well in real-world situations, making it great for businesses and developers. WeNet provides accurate results on many public datasets and is lightweight, meaning it doesn't require a lot of resources to run. This makes it beneficial for users who need reliable speech-to-text functionality without complex setup or maintenance.

https://github.com/wenet-e2e/wenet
#python #apple_silicon #audio_processing #mlx #multimodal #speech_recognition #speech_synthesis #speech_to_text #text_to_speech #transformers

MLX-Audio is a powerful tool for converting text into speech and speech into new audio. It works well on Apple Silicon devices, like M-series chips, making it fast and efficient. You can choose from different languages and voices, and even adjust how fast the speech is. It also includes a web interface where you can see audio in 3D and play your own files. This tool is helpful for making audiobooks, interactive media, and personal projects because it's easy to use and provides high-quality audio quickly.

https://github.com/Blaizzy/mlx-audio
#jupyter_notebook #android #asr #deep_learning #deep_neural_networks #deepspeech #google_speech_to_text #ios #kaldi #offline #privacy #python #raspberry_pi #speaker_identification #speaker_verification #speech_recognition #speech_to_text #speech_to_text_android #stt #voice_recognition #vosk

Vosk is a powerful tool for recognizing speech without needing the internet. It supports over 20 languages and dialects, making it useful for many different users. Vosk is small and efficient, allowing it to work on small devices like smartphones and Raspberry Pi. It can be used for things like chatbots, smart home devices, and creating subtitles for videos. This means users can have private and fast speech recognition anywhere, which is especially helpful when internet access is limited.

https://github.com/alphacep/vosk-api