Теперь Qwen3 можно развернуть через Ollama, LM Studio, SGLang и vLLM — выбирайте удобный формат (GGUF, AWQ или GPTQ) для локального деплоя.
Все модели доступны в коллекции Qwen3 на Hugging Face и ModelScope:
@ai_machinelearning_big_data
#Qwen
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍90🔥32❤16👏3
This media is not supported in your browser
VIEW IN TELEGRAM
После нескольких недель тестирования, функция Deep Research официально запущена и открыта для всех пользователей!
Как это работает?
Просто задай любой вопрос — например:
"Расскажи что-нибудь про робототехнику."
Qwen уточнит:
🔸 Хочешь узнать про историю, теорию или практическое применение?
🔸 Или скажи: "Не знаю… удиви меня!" 😄
Пока ты пьешь кофе ☕ — Qwen соберёт для тебя понятный, полезный и глубокий отчёт.
Попробовать💡
🔗 https://chat.qwen.ai/?inputFeature=deep_research
#Qwen
Please open Telegram to view this post
VIEW IN TELEGRAM
2👍127🔥49❤22🥰4🌭1
⚡️Релиз Qwen3-Embedding и Qwen3-Reranker
✨ Главное:
✅ Модели на 0.6B, 4B и 8B параметров
✅ Поддержка 119 языков
✅ Sota на MMTEB, MTEB и MTEB-Code
✅ Открытый код на Hugging Face, GitHub и ModelScope
✅ Доступ через API на Alibaba Cloud
🔍 Применение:
Поиск документов, RAG, классификация, поиск кода и др.
🟡 Qwen3-Embedding: https://huggingface.co/collections/Qwen/qwen3-embedding-6841b2055b99c44d9a4c371f
🟡 Qwen3-Reranker: https://huggingface.co/collections/Qwen/qwen3-reranker-6841b22d0192d7ade9cdefea
🟡 GitHub: https://github.com/QwenLM/Qwen3-Embedding
🟡 Modelscope: https://modelscope.cn/organization/qwen
@ai_machinelearning_big_data
#qwen
✨ Главное:
✅ Модели на 0.6B, 4B и 8B параметров
✅ Поддержка 119 языков
✅ Sota на MMTEB, MTEB и MTEB-Code
✅ Открытый код на Hugging Face, GitHub и ModelScope
✅ Доступ через API на Alibaba Cloud
🔍 Применение:
Поиск документов, RAG, классификация, поиск кода и др.
@ai_machinelearning_big_data
#qwen
Please open Telegram to view this post
VIEW IN TELEGRAM
❤64👍31🔥19🥰5❤🔥2
Unsolth выложила в открытый доступ в своем репозитории на Github больше сотни готовых ipynb-блокнотов для запуска различных операций в Google Collab практически всех популярных семейств языковых моделей, BERT, TTS-моделей и VLM:
Блокноты включают пошаговые руководства и примеры для вызова инструментов, классификации, синтетических данных, подготовки сетов, инференса и файнтюна моделей и
примеры методов GRPO, DPO, SFT, Continued Pretraining, Reasoning и других.
Unsloth известна тем, что помогает делать большие языковые модели быстрее, компактнее и доступнее при помощи динамического квантования, что позволяет запускать их без сильной потери качества . Их технологии ускоряют обучение и настройку ИИ-моделей в 2 раза и экономят до 70% памяти. Инструменты Unsloth, на сегодняшний день, скачали более 10 млн раз.
Есть подробная документация по использованию, а для тех, кто больше привык к Kaggle - такой же набор блокнотов для запуска на этой платформе.
@ai_machinelearning_big_data
#AI #ML #LLM #Notebooks #Github #Unsloth
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥107❤25👍25❤🔥9🌭3
This media is not supported in your browser
VIEW IN TELEGRAM
Модель поэтапно строит изображение слева направо и сверху вниз, уточняя детали на каждом шаге. Это делает итоговую картинку качественной, естественной и согласованной.
Например, можно написать запрос:
«Сделай картинку милого кота» — и она появится.
А можно загрузить фото кота и попросить: «Добавь коту шапку» — и модель отредактирует изображение.
🎯 Что умеет Qwen VLo:
• Точная генерация: не путает объекты, сохраняет структуру, меняет, например, цвет машины на фото без искажений
• Редактирование по команде: «Сделай фото в стиле Ван Гога» или «добавь солнечное небо» — всё выполняется по инструкции
• Глубокое понимание: может обрабатывать сложные задачи — выделение объектов, сегментация, редактирование текста и фона
• Мультиязычность: понимает запросы на английском, китайском и других языках — просто опишите, что нужно
🧪 Сейчас Qwen VLo доступна в виде превью через Qwen Chat.
👉 Попробовать: https://chat.qwen.ai
👉 Детали: https://qwenlm.github.io/blog/qwen-vlo/
@ai_machinelearning_big_data
#Qwen #Alibaba #ai #genai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍40❤16🔥13
🚀 Qwen выпустила новую большую модель — Qwen3-235B-A22B-Instruct-2507-FP8!
Qwen только что обновили свою флагманскую модель — Qwen3-235B-A22B, и это просто загляденье.
Команда Qwen официально заявила, что отказывается от гибридного режима (Instruct + Reasoning в одной модели). Вместо этого они будут выпускать отдельные модели: одна для инструкций, другая для рассуждений.
Сегодня вышла Instruct-версия, reasoning-модель уже в разработке.
📊 Метрики впечатляют:
- Обгоняет Kimi K2, у которого, между прочим, *триллион* параметров.
- По ряду бенчмарков Превосходит Claude 4 Opus (non-thinking).
- Особенно мощный прирост — в ARC-AGI
⚙️ Архитектура — MoE (Mixture of Experts), активных параметров всего 22B из 235B. То есть модель намного легче, чем кажется — она вполне реалистична для inference, особенно в FP8-режиме.
📜 Модель отлично справляется с:
- Пониманием инструкций
- Логическим выводом
- Обработкой длинных контекстов до 256K токенов
💬 В будущем планируют дистилляцию в младшие версии, так что праздник будет не только для тех, у кого RTX 6000 на столе.
🟠 HF: https://huggingface.co/Qwen/Qwen3-235B-A22B-Instruct-2507 or https://huggingface.co/Qwen/Qwen3-235B-A22B-Instruct-2507-FP8
🟠 ModelScope: https://modelscope.cn/models/Qwen/Qwen3-235B-A22B-Instruct-2507 or https://modelscope.cn/models/Qwen/Qwen3-235B-A22B-Instruct-2507-FP8
Модель действительно стала лучше.
Qwen серьёзно заявляет о себе как об одном из лидеров open-source LLM.
@ai_machinelearning_big_data
#qwen #ml #ai #opensource
Qwen только что обновили свою флагманскую модель — Qwen3-235B-A22B, и это просто загляденье.
Команда Qwen официально заявила, что отказывается от гибридного режима (Instruct + Reasoning в одной модели). Вместо этого они будут выпускать отдельные модели: одна для инструкций, другая для рассуждений.
Сегодня вышла Instruct-версия, reasoning-модель уже в разработке.
📊 Метрики впечатляют:
- Обгоняет Kimi K2, у которого, между прочим, *триллион* параметров.
- По ряду бенчмарков Превосходит Claude 4 Opus (non-thinking).
- Особенно мощный прирост — в ARC-AGI
⚙️ Архитектура — MoE (Mixture of Experts), активных параметров всего 22B из 235B. То есть модель намного легче, чем кажется — она вполне реалистична для inference, особенно в FP8-режиме.
📜 Модель отлично справляется с:
- Пониманием инструкций
- Логическим выводом
- Обработкой длинных контекстов до 256K токенов
💬 В будущем планируют дистилляцию в младшие версии, так что праздник будет не только для тех, у кого RTX 6000 на столе.
Модель действительно стала лучше.
Qwen серьёзно заявляет о себе как об одном из лидеров open-source LLM.
@ai_machinelearning_big_data
#qwen #ml #ai #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤105👍40🔥24🤔7
Forwarded from Анализ данных (Data analysis)
🚀 Qwen3-Coder — новая мощная open-source модель от Alibaba для кодинга
Модель с архитектурой MoE:
- 480B параметров в общей сложности
- 35B активных параметров
- Контекст 256k, но легко масштабируется до 1M токенов
📈 Производительность:
- На уровне Claude 4 Sonnet
- Лучше или на уровне GPT-4.1 на многих задачах
- Обходит Kimi K2, DeepSeek V3 на ряде бенчмарков
🧩 Модель уже доступна:
- На HuggingFace — можно скачать и запускать
- В OpenRouter — $1/M токенов вход, $5/M выход
(в 3 раза дешевле Claude Sonnet: $3 и $15)
💬 Попробовать бесплатно можно:
- Через чат: ttps://chat.qwen.ai/)
- GitHub link: https://github.com/QwenLM/qwen-code
Qwen3-Coder — это просто одна из лучших моделей для программирования, которые мы когда-либо видели.
#qwen #ml #ai #llm #Alibaba
@data_analysis_ml
Модель с архитектурой MoE:
- 480B параметров в общей сложности
- 35B активных параметров
- Контекст 256k, но легко масштабируется до 1M токенов
📈 Производительность:
- На уровне Claude 4 Sonnet
- Лучше или на уровне GPT-4.1 на многих задачах
- Обходит Kimi K2, DeepSeek V3 на ряде бенчмарков
🧩 Модель уже доступна:
- На HuggingFace — можно скачать и запускать
- В OpenRouter — $1/M токенов вход, $5/M выход
(в 3 раза дешевле Claude Sonnet: $3 и $15)
💬 Попробовать бесплатно можно:
- Через чат: ttps://chat.qwen.ai/)
- GitHub link: https://github.com/QwenLM/qwen-code
Qwen3-Coder — это просто одна из лучших моделей для программирования, которые мы когда-либо видели.
#qwen #ml #ai #llm #Alibaba
@data_analysis_ml
👍85🔥22❤17👨💻2
🧠 Qwen3-MT — Alibaba продолжает жечь и выпускает еще одну модель, в этот раз для машинного перевода.
🌍 Поддерживает 92+ языка, на которых говорит 95% населения мира
📚 Обучен на триллионах токенов из интернета, открытых документов и книгах, субтитров из видео.
🔬 Что внутри:
- Модель Qwen3-MoE-72B с архитектурой Mixture-of-Experts
- Заточена на переводческие фишки, поддерживает сложную терминологию и даже очень редкие слова.
- RLHF: обучение с подкреплением повышает точность и естественность модели
Возможности:
✅ Обеспечивает качественный перевод в реальном времени
✅ Контроль стиля и терминов
✅ Масштабируемость для API и продакшена
✅ Цена — от $0.5 за миллион токенов
🟡 Попробовать демку: https://huggingface.co/spaces/Qwen/Qwen3-MT-Demo
🟡 ModelScope: https://modelscope.cn/studios/Qwen/Qwen3-MT-demo
🟡 Документация API: https://alibabacloud.com/help/en/model-studio/translation-abilities
🟡 Блог с подробностями: https://qwenlm.github.io/blog/qwen-mt/
@ai_machinelearning_big_data
#Qwen #Alibaba #ml #llm #ai
🌍 Поддерживает 92+ языка, на которых говорит 95% населения мира
📚 Обучен на триллионах токенов из интернета, открытых документов и книгах, субтитров из видео.
🔬 Что внутри:
- Модель Qwen3-MoE-72B с архитектурой Mixture-of-Experts
- Заточена на переводческие фишки, поддерживает сложную терминологию и даже очень редкие слова.
- RLHF: обучение с подкреплением повышает точность и естественность модели
Возможности:
✅ Обеспечивает качественный перевод в реальном времени
✅ Контроль стиля и терминов
✅ Масштабируемость для API и продакшена
✅ Цена — от $0.5 за миллион токенов
@ai_machinelearning_big_data
#Qwen #Alibaba #ml #llm #ai
Please open Telegram to view this post
VIEW IN TELEGRAM
👍127❤32🔥23🥰5🎃4
✨ Что нового:
<think>
— теперь только быстрый "non-thinking" режим⚙️ С 3B активных параметров Qwen3-30B-A3B уже приближается к уровню GPT-4o и Qwen3-235B-A22B NT, при этом модель доступна для локального запуска.
@ai_machinelearning_big_data
#AI #ML #qwen #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
❤82👍37🔥19😍4👨💻1
Новая компактная модель из семейства Qwen3-Coder — сочетание высокой производительности и эффективности:
✨ Apache 2.0
💬 Chat: https://chat.qwen.ai
🤗 Hugging Face: https://hf.co/Qwen/Qwen3-Coder-30B-A3B-Instruct
🤖 ModelScope: https://modelscope.cn/models/Qwen/Qwen3-Coder-30B-A3B-Instruct
🔧 Код: https://github.com/QwenLM/qwen-code
@ai_machinelearning_big_data
#AI #ML #qwen #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
❤71🔥30👍18❤🔥3👨💻1
Особенно эффективна для создания картинок с нативным текстом.
🔍 Основные моменты:
🔹 Рендеринг текста SOTA показатели — конкурирует с GPT-4o на английском языке, лучший в своем классе на китайском языке
🔹 Двуязычная поддержка, разнообразные шрифты, понимает сложные промпты.
Техотчёт показывает:
- модель минимальные искажения символов при генерации;
- заметно более высокие метрики качества изображения против «стандартных» диффузионок.
🎨 Можешь отлично справляется с созданием изображений в разных стилях — от фотореализма до аниме, от импрессионизма до минимализма.
ModelScope:https://modelscope.cn/models/Qwen/Qwen-Image
@ai_machinelearning_big_data
#qwen #ml #llm #ai
Please open Telegram to view this post
VIEW IN TELEGRAM
👍68❤17🔥10👨💻3
🚀 Qwen3-4B-Instruct-2507 и Qwen3-4B-Thinking-2507 — ловите еще один апдейт от Qwen: LLM с поддержкой 256K контекста
🧠 Qwen3-4B-Instruct — идеально подойдёт для:
• генерации текстов
• многоязычных задач
• сложных промптов
🧠 Qwen3-4B-Thinking — заточен под:
• логику
• математику
• программирование и технический анализ
⚡ Обе модели стали:
• точнее
• логичнее
• лучше справляются с длинными диалогами
🔗 Модели на Hugging Face:
https://huggingface.co/Qwen/Qwen3-4B-Instruct-2507
https://huggingface.co/Qwen/Qwen3-4B-Thinking-2507
🔗 Модели на ModelScope:
https://modelscope.cn/models/Qwen/Qwen3-4B-Instruct-2507
https://modelscope.cn/models/Qwen/Qwen3-4B-Thinking-2507
@ai_machinelearning_big_data
#AI #ML #qwen #opensource
🧠 Qwen3-4B-Instruct — идеально подойдёт для:
• генерации текстов
• многоязычных задач
• сложных промптов
🧠 Qwen3-4B-Thinking — заточен под:
• логику
• математику
• программирование и технический анализ
⚡ Обе модели стали:
• точнее
• логичнее
• лучше справляются с длинными диалогами
🔗 Модели на Hugging Face:
https://huggingface.co/Qwen/Qwen3-4B-Instruct-2507
https://huggingface.co/Qwen/Qwen3-4B-Thinking-2507
🔗 Модели на ModelScope:
https://modelscope.cn/models/Qwen/Qwen3-4B-Instruct-2507
https://modelscope.cn/models/Qwen/Qwen3-4B-Thinking-2507
@ai_machinelearning_big_data
#AI #ML #qwen #opensource
👍81🔥44❤20👨💻2
This media is not supported in your browser
VIEW IN TELEGRAM
- SimpleQA: 91% точности, чуть выше Perplexity Pro — и всё это полностью локально.
- Сценарии: быстрый веб-поиск и глубокое исследование (Deep Research).
Из чего сделана
- Базируется на Qwen3-4B-Thinking (контекст до 256k), дообучена в Jan на рассуждение и работу с инструментами.
Где запускать
- Jan, llama.cpp или vLLM.
Как включить поиск в Jan
- Settings → Experimental Features → On
- Settings → MCP Servers → включите поисковый MCP (например, Serper)
Модели
- Jan-v1-4B: https://huggingface.co/janhq/Jan-v1-4B
- Jan-v1-4B-GGUF: https://huggingface.co/janhq/Jan-v1-4B-GGUF
@ai_machinelearning_big_data
#ai #ml #local #Qwen #Jan
Please open Telegram to view this post
VIEW IN TELEGRAM
👍84❤24🔥20
This media is not supported in your browser
VIEW IN TELEGRAM
Теперь можно не только генерировать изображения, но и редактировать их по команде: менять объекты, стиль, фон или даже текст прямо на картинке.
Что умеет:
- ✨ Редактировать смысл и детали — можно, например, повернуть объект, сменить цвет или стиль, не трогая остальное.
- 🔤 Менять текст на картинках — добавлять, убирать или редактировать надписи на китайском и английском, при этом сохраняются шрифт и стиль.
- 🏆 Лучшие результаты на тестах — модель показывает топ-уровень среди открытых решений.
Как работает:
Система сочетает понимание картинки (VL-модель) и точное управление структурой (VAE-кодировщик). Поэтому картинка сохраняет и смысл, и детали после правок.
Достаточно открыть Qwen Chat и выбрать режим *Image Editing*.
@ai_machinelearning_big_data
#qwen #ml #llm #ai
Please open Telegram to view this post
VIEW IN TELEGRAM
👍74❤38🔥25😐2🙈2😁1
🚀 Релиз: Qwen3-Next-80B-A3B - эффективная модель заточенная на работа работу с очень длинным контекстом!
🔹 80B параметров, но активируется только 3B на токен → тренировка и инференс 10x дешевле и быстрее, чем у Qwen3-32B (особенно при 32K+ контексте).
🔹 Гибридная архитектура: Gated DeltaNet + Gated Attention → сочетает скорость и точность.
🔹 Ultra-sparse MoE: 512 экспертов, маршрутизируется 10 + 1 общий.
🔹 Multi-Token Prediction → ускоренное speculative decoding.
🔹 По производительности обходит Qwen3-32B и приближается к Qwen3-235B в рассуждениях и long-context задачах.
🟢 Qwen3-Next-80B-A3B-Instruct показатели почти на уровне 235B flagship.
🟢 Qwen3-Next-80B-A3B-Thinking превосходит Gemini-2.5-Flash-Thinking.
▪ Попробовать: https://chat.qwen.ai
▪ Анонс: https://qwen.ai/blog?id=4074cca80393150c248e508aa62983f9cb7d27cd&from=research.latest-advancements-list
▪ HuggingFace: https://huggingface.co/collections/Qwen/qwen3-next-68c25fd6838e585db8eeea9d
▪ ModelScope: https://modelscope.cn/collections/Qwen3-Next-c314f23bd0264a
▪ Kaggle: https://kaggle.com/models/qwen-lm/qwen3-next-80b
▪ Alibaba Cloud API: https://alibabacloud.com/help/en/model-studio/models#c5414da58bjgj
@ai_machinelearning_big_data
#AI #LLM #Qwen #DeepLearning #MoE #EfficientModels #LongContext #Reasonin
▪ Попробовать: https://chat.qwen.ai
▪ Анонс: https://qwen.ai/blog?id=4074cca80393150c248e508aa62983f9cb7d27cd&from=research.latest-advancements-list
▪ HuggingFace: https://huggingface.co/collections/Qwen/qwen3-next-68c25fd6838e585db8eeea9d
▪ ModelScope: https://modelscope.cn/collections/Qwen3-Next-c314f23bd0264a
▪ Kaggle: https://kaggle.com/models/qwen-lm/qwen3-next-80b
▪ Alibaba Cloud API: https://alibabacloud.com/help/en/model-studio/models#c5414da58bjgj
@ai_machinelearning_big_data
#AI #LLM #Qwen #DeepLearning #MoE #EfficientModels #LongContext #Reasonin
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤71👍33🔥21🌭2👏1
Эта утилита снимает ограничение API Qwen-ASR (бывший Qwen3-ASR-Flash) в 3 минуты и позволяет расшифровывать часы контента. Достигается это за счёт умного разбиения записи и параллельной обработки.
Основные возможности:
- Снятие лимита в 3 минуты - транскрибируй файлы любой длины
- Умное разбиение (VAD - это технология, которая определяет, где в аудио есть речь, а где — пауза или шум.) - деление по естественным паузам, без
- Высокая скорость - многопоточность и параллельные запросы к API
- Автоматический ресемплинг — конвертация в нужный формат 16kHz mono
- Поддержка любых форматов — MP4, MOV, MKV, MP3, WAV, M4A и др.
- Простота - запуск одной командой через CLI
pip install qwen3-asr-toolkit
🔗 GitHub: https://github.com/QwenLM/Qwen3-ASR-Toolkit
@ai_machinelearning_big_data
#asr #speech2text #qwen #opensource #nlp #toolki
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍70👌39❤18🔥9🤩3👏2🥱2💘1
⚡️ Вышли новые версии Qwen3-Next-80B в формате FP8!
📌 Модели:
- Qwen3-Next-80B-A3B-Instruct-FP8: 80B, обученная в формате Instruct. Сочетает MoE-архитектуру и FP8-квантование, при большом размере работает быстро и кушает меньше памяти, поддерживает длинный контекст - до 262k токенов (с расширением до миллиона) и оптимизирована для сложных задач рассуждения и работы с большими документами.
- Qwen3-Next-80B-A3B-Thinking-FP8
— Thinking модель, с акцентом на рассуждения, и решение логических задач. Гибридное внимание: Gated DeltaNet + Gated Attention → работа с супердлинными контекстами. Thinking-версия** показывает топ-результаты на задачах рассуждений, обгоняя не только Qwen3-30B/32B, но и закрытую Gemini-2.5-Flash-Thinking
- FP8-точность → быстрый инференс при сохранении качества.
- Полная совместимость с Transformers, vLLM и SGLang.
- Подходит для продакшн-задач, где важны скорость и эффективность.
🟠 Hugging Face: https://huggingface.co/collections/Qwen/qwen3-next-68c25fd6838e585db8eeea9d
🟠 ModelScope: https://modelscope.cn/collections/Qwen3-Next-c314f23bd0264a
@ai_machinelearning_big_data
#qwen #opensource #llm #ml
📌 Модели:
- Qwen3-Next-80B-A3B-Instruct-FP8: 80B, обученная в формате Instruct. Сочетает MoE-архитектуру и FP8-квантование, при большом размере работает быстро и кушает меньше памяти, поддерживает длинный контекст - до 262k токенов (с расширением до миллиона) и оптимизирована для сложных задач рассуждения и работы с большими документами.
- Qwen3-Next-80B-A3B-Thinking-FP8
— Thinking модель, с акцентом на рассуждения, и решение логических задач. Гибридное внимание: Gated DeltaNet + Gated Attention → работа с супердлинными контекстами. Thinking-версия** показывает топ-результаты на задачах рассуждений, обгоняя не только Qwen3-30B/32B, но и закрытую Gemini-2.5-Flash-Thinking
- FP8-точность → быстрый инференс при сохранении качества.
- Полная совместимость с Transformers, vLLM и SGLang.
- Подходит для продакшн-задач, где важны скорость и эффективность.
@ai_machinelearning_big_data
#qwen #opensource #llm #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤51👍23🔥14❤🔥1💘1
Модель обрабатывает текст, изображения, аудио и видео в одной модели.
На бенчмарках выглядит так, как будто все модальности работают одинаково качественно.
- Первое место на 22 из 36 аудио- и мультимодальных бенчмарков
- Поддержка: 119 языков текста,
- Минимальная задержка — 211 мс
- Обработка аудио до 30 минут длиной
- ПОзволяет гибко настраивать через системные промпты
- Встроенный tool calling
Компания выложила три версии:
- Qwen3-Omni-30B-A3B-Instruct
- Qwen3-Omni-30B-A3B-Thinking
- Qwen3-Omni-30B-A3B-Captioner
👉 Попробовать можно здесь:
💬 Chat: https://chat.qwen.ai/?models=qwen3-omni-flash
💻 GitHub: https://github.com/QwenLM/Qwen3-Omni
🤗 Hugging Face: https://huggingface.co/collections/Qwen/qwen3-omni-68d100a86cd0906843ceccbe
🤖 ModelScope: https://modelscope.cn/collections/Qwen3-Omni-867aef131e7d4f
🎬 Demo: https://huggingface.co/spaces/Qwen/Qwen3-Omni-Demo
@ai_machinelearning_big_data
#qwen #opensource #llm #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍114❤44🔥33💘1
🚀 Qwen Chat получил интересные апдейты
Теперь в Qwen Chat можно не только искать данные в интернете, но и сразу визуализировать их графиками благодаря связке *Code Interpreter + Web Search*.
Пример, можно прогноз погоды на 7 дней и получить готовый график прямо в чате.
📈 Если хотите быстро построить диаграмму по найденным данным, то просто напишите это в промоет.
Попробовать можно здесь: https://chat.qwen.ai
@ai_machinelearning_big_data
#qwen #llm
Теперь в Qwen Chat можно не только искать данные в интернете, но и сразу визуализировать их графиками благодаря связке *Code Interpreter + Web Search*.
Пример, можно прогноз погоды на 7 дней и получить готовый график прямо в чате.
📈 Если хотите быстро построить диаграмму по найденным данным, то просто напишите это в промоет.
Попробовать можно здесь: https://chat.qwen.ai
@ai_machinelearning_big_data
#qwen #llm
🔥91❤24🥰7👍3😁2🙈2😢1
Это подборка интерактивных ноутбуков, демонстрирующих возможности Qwen3-VL - как при локальном запуске, так и через API.
Внутри - десятки реальных примеров с разборами:
▪ Работа с изображениями и рассуждение по ним
▪ Агент для взаимодействия с интерфейсами (Computer-Use Agent)
▪ Мультимодальное программирование
▪ Распознавание объектов и сцен (Omni Recognition)
▪ Продвинутое извлечение данных из документов
▪ Точное определение объектов на изображении
▪ OCR и извлечение ключевой информации
▪ 3D-анализ и привязка объектов
▪ Понимание длинных документов
▪ Пространственное рассуждение
▪ Мобильный агент
▪ Анализ и понимание видео
@ai_machinelearning_big_data
#Qwen #Qwen3VL #AI #VisionLanguage #Multimodal #LLM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤78🔥26👍22💘1