331K subscribers
4.16K photos
764 videos
17 files
4.68K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
🧠 ИИ генерирует научный код лучше людей.

Сегодняшний дамп статей от Google Research — это не очередной инкрементальный апдейт, а знаковое событие.

Исследователи представили систему, которая автоматически создаёт экспертное ПО для научных задач, и она уже побеждает на профессиональных лидербордах.

Это не просто ещё один кодогенератор.

Система использует LLM (Gemini), управляемую древовидным поиском (Tree Search) — алгоритмом из мира AlphaGo. Её цель — не просто скомпилировать код, а итеративно улучшать его, максимизируя конкретную метрику качества (score) на реальных данных. Учёные называют такие задачи «scorable tasks».

Что система сделала на практике:

1. Биоинформатика (scRNA-seq): Открыла 40 новых методов для интеграции данных single-cell, которые побили лучшие человеческие методы на публичном лидерборде OpenProblems. ИИ не просто скопировал известный метод BBKNN, а улучшил его, скомбинировав с другим алгоритмом (ComBat), до чего люди не додумались.
2. **Эпидемиология (COVID-19):** ИИ сгенерировал 14 моделей, которые в течение всего сезона 2024/25 стабильно показывали результаты лучше, чем ансамбль CDC и любые отдельные модели при прогнозировании госпитализаций.
Работа с временными рядами обычно очень сложна, но здесь ИИ справился и превзошёл существующие подходы.

3. Другие области: Система также показала SOTA в:
· Сегментации спутниковых снимков (DLRSD benchmark, mIoU > 0.80)
· Прогнозировании нейронной активности целого мозга zebrafish (ZAPBench)
· Прогнозах временных рядов (GIFT-Eval benchmark)
· Численном решении сложных интегралов, где стандартная scipy.integrate.quad() падает.

🟠Как это работает?

Вместо того чтобы с нуля генерировать код, система начинает с существующего решения (например, вызова quad() или простой модели) и запускает древовидный поиск. На каждом шаге LLM предлагает «мутации» — варианты изменения кода. Дерево поиска решает, какую ветку развивать дальше, балансируя между эксплуатацией (улучшение текущего лучшего решения) и исследованием (попытка радикально новых идей).

Ключевая фишка — система умеет интегрировать научные идеи извне. Ей можно скормить PDF научной статьи, и она попытается реализовать описанный там метод. Более того, ИИ может комбинировать идеи из разных статей, создавая гибридные методы, которые и приводят к прорыву.

🟠Что это значит?

Это не замена учёным. Это мощнейший инструмент усиления. Система за часы прорабатывает и тестирует идеи, на которые у исследовательской группы ушли бы недели или месяцы. Она без устали перебирает «иголки в стоге сена» — те самые нетривиальные решения, которые ведут к скачку в качестве.

Пока что система требует чётко определённой метрики для максимизации. Но для огромного пласта эмпирической науки (от биологии и медицины до климатологии и астрофизики) это и есть основной способ оценки гипотез.

Вывод: Это один из самых убедительных на сегодня шагов к реальному ИИ-ассистенту для учёных. Он не просто отвечает на вопросы — он проводит вычислительные эксперименты и находит решения, превосходящие человеческие.

🟢Оригинал статьи: An AI system to help scientists write expert-level empirical software
🟢Код и примеры решений: github.com/google-research/score

@ai_machinelearning_big_data

#AI #Science #MachineLearning #LLM #Research #GoogleAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
184🔥39👍20🤔6🤣5😐5🥰2❤‍🔥1👌1