🔦 Генерация изображений на свете, а не на GPU
Исследователи из UCLA представили оптическую генеративную модель (Optical Generative Model).
Она использует свет и линзы вместо вычислительных блоков - то есть картинки рождаются не на чипах, а в физике.
🔬 Как это работает:
1. Лёгкий цифровой энкодер превращает случайный шум в фазовый узор.
2. Этот узор загружается на оптический модулятор света.
3. Свет проходит через дифракционный декодер и прямо на сенсоре формируется изображение.
✔️ Авторами проведены реальные эксперименты: с помощью видимого света и SLM показаны результаты генерации:
- Созданы цифры, лица, бабочки и даже картины в стиле Ван Гога.
- Качество сравнимо с современными диффузионными моделями.
- Есть две версии: мгновенная (один проход) и итеративная (несколько шагов, как у диффузии).
⚡ Чем интересен такой подход
- Подход не требует никакой вычислительной нагрузки.
- Супербыстрая генерация: физика света выполняет то, что GPU делает миллиардами операций.
- Это открывает путь к энергоэффективному ИИ для edge-устройств: AR/VR, мобильные камеры, компактные сенсоры.
⚠️ Ограничения:
- Сложно выравнивать оптические системы.
- Ограничения по точности фазовых масок.
- Зависимость от качества оборудования (шум, битовая глубина).
Но даже с этими проблемами, это первый шаг к новому классу ИИ, где вычисления заменяются чистой оптикой.
Nature: https://www.nature.com/articles/s41586-025-09446-5
@ai_machinelearning_big_data
#AI #OpticalComputing #Photonics #GenerativeA
Исследователи из UCLA представили оптическую генеративную модель (Optical Generative Model).
Она использует свет и линзы вместо вычислительных блоков - то есть картинки рождаются не на чипах, а в физике.
1. Лёгкий цифровой энкодер превращает случайный шум в фазовый узор.
2. Этот узор загружается на оптический модулятор света.
3. Свет проходит через дифракционный декодер и прямо на сенсоре формируется изображение.
- Созданы цифры, лица, бабочки и даже картины в стиле Ван Гога.
- Качество сравнимо с современными диффузионными моделями.
- Есть две версии: мгновенная (один проход) и итеративная (несколько шагов, как у диффузии).
- Подход не требует никакой вычислительной нагрузки.
- Супербыстрая генерация: физика света выполняет то, что GPU делает миллиардами операций.
- Это открывает путь к энергоэффективному ИИ для edge-устройств: AR/VR, мобильные камеры, компактные сенсоры.
⚠️ Ограничения:
- Сложно выравнивать оптические системы.
- Ограничения по точности фазовых масок.
- Зависимость от качества оборудования (шум, битовая глубина).
Но даже с этими проблемами, это первый шаг к новому классу ИИ, где вычисления заменяются чистой оптикой.
Nature: https://www.nature.com/articles/s41586-025-09446-5
@ai_machinelearning_big_data
#AI #OpticalComputing #Photonics #GenerativeA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥110❤29👍16🤔9😨8🤨2🫡2😍1💘1