329K subscribers
4.21K photos
785 videos
17 files
4.72K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
📌100+ готовых блокнотов Google Collab от Unsloth.

Unsolth выложила в открытый доступ в своем репозитории на Github больше сотни готовых ipynb-блокнотов для запуска различных операций в Google Collab практически всех популярных семейств языковых моделей, BERT, TTS-моделей и VLM:

🟢Llama v.3 -3.2
🟢Qwen v.2-3
🟢Gemma v.2-3 + Code Gemma
🟢Mistral Family
🟢Phi v.3-4
🟠TTS (Sesame, Orpheus, Spark, Oute, Llasa, Whisper)
🟠VLM и MMLM (Llama 3.2, Qwen 2.5VL, Pixtral)
🟠BERT (ModernBERT-large)

Блокноты включают пошаговые руководства и примеры для вызова инструментов, классификации, синтетических данных, подготовки сетов, инференса и файнтюна моделей и
примеры методов GRPO, DPO, SFT, Continued Pretraining, Reasoning и других.

Unsloth известна тем, что помогает делать большие языковые модели быстрее, компактнее и доступнее при помощи динамического квантования, что позволяет запускать их без сильной потери качества . Их технологии ускоряют обучение и настройку ИИ-моделей в 2 раза и экономят до 70% памяти. Инструменты Unsloth, на сегодняшний день, скачали более 10 млн раз.


Есть подробная документация по использованию, а для тех, кто больше привык к Kaggle - такой же набор блокнотов для запуска на этой платформе.


📌Лицензирование: LGPL-3.0-1


🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #Notebooks #Github #Unsloth
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥10725👍25❤‍🔥9🌭3
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ BERT is just a Single Text Diffusion Step

Любопытны пост, где автор объяснил на примере очень простую и очевидную, но мощную идею.

Он заметил, что то, что мы называем диффузией текста, на самом деле - это просто обобщённая версия классического обучения BERT.

Как работает
BERT?
В BERT модель берёт текст и маскирует часть слов, а потом учится угадывать, какие слова были скрыты.
В диффузии происходит почти то же самое, только шагов больше: на каждом шаге модель немного «портит» текст (добавляет шум), а затем восстанавливает его, всё меньше и меньше теряя смысл, пока не соберёт финальный чистый текст.

То есть BERT делает один шаг очистки - угадывает замаскированные слова.

А диффузионная модель делает много таких шагов подряд, постепенно превращая случайный набор токенов в осмысленный текст.

Барри дообучил RoBERTa, чтобы показать это на практике - и получил настоящий текстовый диффузионный генератор.

В примере:
- Используется RoBER (улучшенная версия модели BERT,) и датасет WikiText.
- На каждом шаге часть токенов заменяется на <MASK>,
модель восстанавливает их, потом снова маскирует — и так несколько раз.
- После нескольких итераций модель способна генерировать связный текст,
даже без автогенеративного декодера (как у GPT).

📈 Результаты
- Модель генерирует осмысленный текст, хотя и не идеально связный.
- Качество улучшалось по мере добавления шагов диффузии.
- По времени генерации RoBERTa Diffusion была немного медленнее, чем GPT-2 (~13 сек против 9 сек), но архитектура осталась полностью encoder-only.

Автор упоминает, что позже наткнулся на работу DiffusionBERT, где идею реализовали глубже и подтвердили результатами.

Главная мысль:
BERT можно считать одноступенчатой версией текстовой диффузии.
Если добавить больше шагов, то vs получаем диффузионный генератор текста.

Если BERT - это один шаг диффузии, то будущее может принадлежать моделям, совмещающим "понимание" и "генерацию" текста в одном процессе.

https://nathan.rs/posts/roberta-diffusion/

@ai_machinelearning_big_data


#AI #Diffusion #RoBERTa #BERT #LanguageModel #MLM #Research
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥15233👍22👏19🤓19👨‍💻6🤗2🥰1😁1🥱1🤝1