This media is not supported in your browser
VIEW IN TELEGRAM
🤖 Unitree G1 Kungfu Kid V6.0 — это уже не просто робот, а настоящий кунг-фу мастер.
Полтора года тренировок сделали своё дело: он стал быстрее, сильнее и умнее.
У робота 43 степени свободы, куча сенсоров и гибридная система управления, которая позволяет ему постоянно учиться и оттачивать движения.
Кажется, мы реально приближаемся к моменту, когда роботы начнут тренироваться, как люди.
Интересно, чему G1 научится следующим - паркуру или еще чему покруче?
@ai_machinelearning_big_data
#AI #Robotics #Humanoid #Unitree #FutureTech
Полтора года тренировок сделали своё дело: он стал быстрее, сильнее и умнее.
У робота 43 степени свободы, куча сенсоров и гибридная система управления, которая позволяет ему постоянно учиться и оттачивать движения.
Кажется, мы реально приближаемся к моменту, когда роботы начнут тренироваться, как люди.
Интересно, чему G1 научится следующим - паркуру или еще чему покруче?
@ai_machinelearning_big_data
#AI #Robotics #Humanoid #Unitree #FutureTech
👀72👍24🔥15❤8😁6🥰3🥱3💘3
🧬Gemma C2S-Scale 27B помогла учёным найти новый способ борьбы с раком
Исследователи из Google Research и Calico применили эту модель, чтобы анализировать активность генов в клетках и искать вещества, усиливающие иммунный отклик против опухолей.
В чем сложность: многие опухоли остаются «холодными» - иммунная система их «не замечает». Чтобы обратить это, нужно вызвать экспрессию антигенов (antigen presentation), но делать это точно, только там, где уже есть слабый иммунный сигнал, но не всем клеткам подряд.
Gemma смогла предсказать, что комбинация препарата silmitasertib (ингибитор CK2) и низкой дозы интерферона повышает экспрессию MHC-I - это делает “холодные” опухоли более заметными для иммунной системы.
🔬 Результаты лабораторных тестов подтвердили прогноз модели:
- совместное применение действительно усилило работу антигенов примерно на 50 % и это может стать основой для новых видов иммунотерапии.
Главное достижение: ИИ не просто ускорил анализ данных, а сформулировал новую научную гипотезу, которая нашла подтверждение в реальных экспериментах.
Это пример того, как большие модели выходят за рамки генерации текста - они начинают открывать новые лекарства и механизмы действия.
🟠 Подробнее: https://blog.google/technology/ai/google-gemma-ai-cancer-therapy-discovery
🟠 Статья: https://www.biorxiv.org/content/10.1101/2025.04.14.648850v2
🟠 Github: https://github.com/vandijklab/cell2sentence
@ai_machinelearning_big_data
#AI #GoogleDeepMind #BioTech
Исследователи из Google Research и Calico применили эту модель, чтобы анализировать активность генов в клетках и искать вещества, усиливающие иммунный отклик против опухолей.
В чем сложность: многие опухоли остаются «холодными» - иммунная система их «не замечает». Чтобы обратить это, нужно вызвать экспрессию антигенов (antigen presentation), но делать это точно, только там, где уже есть слабый иммунный сигнал, но не всем клеткам подряд.
Gemma смогла предсказать, что комбинация препарата silmitasertib (ингибитор CK2) и низкой дозы интерферона повышает экспрессию MHC-I - это делает “холодные” опухоли более заметными для иммунной системы.
🔬 Результаты лабораторных тестов подтвердили прогноз модели:
- совместное применение действительно усилило работу антигенов примерно на 50 % и это может стать основой для новых видов иммунотерапии.
Главное достижение: ИИ не просто ускорил анализ данных, а сформулировал новую научную гипотезу, которая нашла подтверждение в реальных экспериментах.
Это пример того, как большие модели выходят за рамки генерации текста - они начинают открывать новые лекарства и механизмы действия.
@ai_machinelearning_big_data
#AI #GoogleDeepMind #BioTech
Please open Telegram to view this post
VIEW IN TELEGRAM
👍94❤47🔥20👏6💘5🤨2❤🔥1
Media is too big
VIEW IN TELEGRAM
Новая компактная модель Haiku 4.5 выдает уровень качества Sonnet 4, но при этом работает в два раза быстрее и стоит в три раза дешевле.
Она справляется с широким спектром задач - от написания кода до работы с компьютером и показывает отличные результаты как вспомогательный агент в связке с более мощной моделью Sonnet 4.5.
claude
Обновлённая нейросеть для генерации видео теперь создаёт кадры кинематографического уровня, с реалистичным светом, тенями, движением и деталями без артефактов.
Veo 3.1 научилась лучше понимать сюжет и контекст, генерировать целые истории и сиквелы, а также в разы лучше понимает русский язык.
Цензуру заметно ослабили - теперь творческая свобода почти не ограничена.
Главное новшество - стабильная ABI для libtorch, это позволяет создавать C++ и CUDA-расширения без риска поломок при обновлениях.
Также добавлена
symmetric memory
- технология для ускорения вычислений между несколькими GPU, упрощающая обмен данными между видеокартами.Платформа стала ещё более универсальной: теперь официально поддерживаются ROCm, XPU и CUDA 13, а также улучшена оптимизация под Intel, Arm и x86 процессоры.
В разработке приняли участие 452 контрибьютора, внесено более 3 тысяч коммитов - PyTorch продолжает задавать темп в мире open-source AI.
pytorch
Финансирование опирается на три ключевых направления: рост собственных доходов (AI-агенты, видео-модель Sora, реклама и встроенные покупки), выпуск долговых инструментов и партнёрские инвестиции через схему “чужих балансов” - когда инфраструктуру частично оплачивают крупные партнёры. Проект Stargate при этом позволяет OpenAI при необходимости продавать избыточные вычислительные мощности обратно на рынок.
Сейчас годовой доход компании оценивается в $13 млрд, при этом 70% приносит платная подписка ChatGPT. Из 800 млн пользователей платит только 5%, но OpenAI намерена удвоить этот показатель. В Индии уже появились дешёвые тарифы, а реклама тестируется с осторожностью.
При всём росте первая половина года принесла $8 млрд убытков, поэтому ставка делается на снижение себестоимости вычислений и масштабирование дата-центров. Около двух третей затрат приходятся на полупроводники, что вызывает критику за “круговое финансирование”, когда инвестиции возвращаются к поставщикам чипов.
Руководство уверено, что растущий спрос и падение стоимости оборудования позволят сделать проект реалистичным и укрепить доверие кредитных рынков.
ft
Команда представила Recursive Language Models (RLMs) - новый метод инференса, позволяющий моделям рекурсивно разбирать длинные промпты, как в среде REPL.
RLM делит огромный ввод на части и обрабатывает их пошагово, без ограничений по длине контекста. Для пользователя это выглядит как обычный вызов модели, но внутри она рекурсивно вызывает себя для промежуточных вычислений.
На тесте OOLONG RLM на базе GPT-5-mini превзошёл GPT-5 на 110% при 132k токенах и стоил дешевле.
На BrowseComp-Plus RLM-модели обработали до 10 млн токенов без потери качества, опередив схемы с поиском и ретривером.
Главная цель RLM - устранить “context rot”, когда модели “забывают” длинные диалоги.
Рекурсивный подход может стать ключом к практически бесконечному контексту без сложных обходных решений.
Github
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤58👍19🔥7🥰2💘2👌1👀1
🔥 Nanochat D32 : микромодель Карпаты за $1000, которая реально работает
Карпаты написал, что завершил обучение Nanochat D32, обученной за 33 часа при бюджете $1000 (вместо $100).
Результаты - удивительно хорошие для такой «крошки»:
- 📈 CORE score: 0.31 (выше, чем у GPT-2 — ~0.26)
- 🧮 GSM8K: с 8% до 20%
- 🚀 Рост виден на всех этапах - pretraining, SFT и RL
Карпати пишет:
💡 Факты:
- Nanochat тренируется с нуля
- Самая маленькая модель Nanochat содержит примерно в тысячу раз меньше параметров, чем GPT-3.
- Обнолвенный скрипт
📎 Подробности и отчёт:
https://github.com/karpathy/nanochat/discussions/8
Карпати уже тестирует веб-чат с моделью (ссылку не публикует, чтобы не обвалили сервер).
Дальше -оптимизация и возможно, переход к следующему уровню масштабирования.
#AI #LLM #Nanochat #Karpathy #AIresearch #OpenSourceAI
Карпаты написал, что завершил обучение Nanochat D32, обученной за 33 часа при бюджете $1000 (вместо $100).
Результаты - удивительно хорошие для такой «крошки»:
- 📈 CORE score: 0.31 (выше, чем у GPT-2 — ~0.26)
- 🧮 GSM8K: с 8% до 20%
- 🚀 Рост виден на всех этапах - pretraining, SFT и RL
Карпати пишет:
> «Не ждите от микромоделей чудес. Они обходятся $100–$1000, а не миллиарды долларов, как у крупных лабораторий.
> Разговаривать с моделью - как с ребёнком из детсада: они милые, ошибаются, путаются, галлюцинируют, но это весело.»
💡 Факты:
- Nanochat тренируется с нуля
- Самая маленькая модель Nanochat содержит примерно в тысячу раз меньше параметров, чем GPT-3.
- Обнолвенный скрипт
run1000.sh
уже доступен в репозитории 📎 Подробности и отчёт:
https://github.com/karpathy/nanochat/discussions/8
Карпати уже тестирует веб-чат с моделью (ссылку не публикует, чтобы не обвалили сервер).
Дальше -оптимизация и возможно, переход к следующему уровню масштабирования.
#AI #LLM #Nanochat #Karpathy #AIresearch #OpenSourceAI
🔥80❤23👍13😁2👌1👻1💘1
📄 PaddleOCR-VL (0.9B) — компактная Vision-Language модель нового поколения
Команда Baidu AI представила PaddleOCR-VL (0.9B) — сверхлёгкую VLM-модель, которая достигает SOTA-точности в задачах распознавания:
- текстов,
- таблиц,
- формул,
- графиков
💡 Под капотом:
- NaViT - динамический vision-энкодер
- ERNIE - облегчённая языковая модель от Baidu
⚡️ Поддержка 109 языков.
🟠 GitHub: https://github.com/PaddlePaddle/PaddleOCR)
🟠 HuggingFace: https://huggingface.co/PaddlePaddle/PaddleOCR-VL
🟠 Docs https://paddleocr.ai/latest/en/index.html
@ai_machinelearning_big_data
#BaiduAI #PaddlePaddle #Ernie #PaddleOCR #VisionLanguage #AI #OCR
Команда Baidu AI представила PaddleOCR-VL (0.9B) — сверхлёгкую VLM-модель, которая достигает SOTA-точности в задачах распознавания:
- текстов,
- таблиц,
- формул,
- графиков
💡 Под капотом:
- NaViT - динамический vision-энкодер
- ERNIE - облегчённая языковая модель от Baidu
@ai_machinelearning_big_data
#BaiduAI #PaddlePaddle #Ernie #PaddleOCR #VisionLanguage #AI #OCR
Please open Telegram to view this post
VIEW IN TELEGRAM
❤54🔥29👍16😁2💘1
🤗 Кто реально двигает open-source ИИ: анализ топ-50 самых скачиваемых моделей на Hugging Face
Исследование показывает, какие организации и типы моделей определяют экосистему открытых моделей.
🔥 Главное:
📦 Топ-50 - это всего 3.4% всех моделей на Hugging Face, но именно они собирают более 80% из 45 миллиардов скачиваний.
Подавляющее большинство активности сосредоточено вокруг небольшой группы лидеров -
именно эти модели формируют лицо всего open-source ИИ.
📉 Размер имеет значение (и чем меньше — тем лучше):
- 92.5% загрузок — модели < 1B параметров
- 86.3% — < 500M
- 70% — < 200M
- 40% — < 100M
Очевидны выводы: в open-source побеждают малые и лёгкие модели, пригодные для локального развёртывания и edge-инференса.
🧠 Популярные направления:
- NLP — 58.1%
- Computer Vision — 21.2%
- Audio — 15.1%
- Multimodal — 3.3%
- Time Series — 1.7%
Кто создаёт самые скачиваемые модели:
- Компании - 63.2% (Google лидер)
- Университеты - 20.7%
- Индивидуальные авторы - 12.1%
- НКО - 3.8%
- Прочие лаборатории - 0.3%
Какие типы моделей побеждают:
- Текстовые энкодеры - 45% всех загрузок
- Декодеры - всего 9.5%
- Энкодер-декодеры - 3%
📌 Несмотря на хайп вокруг LLM, массово скачиваются не гиганты, а утилитарные модельки для интеграции в собственные продукты.
🇺🇸 Лидеры по странам:
США доминируют по всем категориям:
- встречаются 18 раз среди топ-50 скачиваний
- на США приходится 56.4% всех загрузок
Open-source ИИ живёт не за счёт гигантских LLM, а благодаря компактным, быстрым и практичным моделям, мкоторые реально работают в продуктах и проектах.
🟠 Почитать полностью: https://huggingface.co/blog/lbourdois/huggingface-models-stats
@ai_machinelearning_big_data
#AI #HuggingFace #OpenSource #ML #Research #LLM #AITrends
Исследование показывает, какие организации и типы моделей определяют экосистему открытых моделей.
🔥 Главное:
📦 Топ-50 - это всего 3.4% всех моделей на Hugging Face, но именно они собирают более 80% из 45 миллиардов скачиваний.
Подавляющее большинство активности сосредоточено вокруг небольшой группы лидеров -
именно эти модели формируют лицо всего open-source ИИ.
📉 Размер имеет значение (и чем меньше — тем лучше):
- 92.5% загрузок — модели < 1B параметров
- 86.3% — < 500M
- 70% — < 200M
- 40% — < 100M
Очевидны выводы: в open-source побеждают малые и лёгкие модели, пригодные для локального развёртывания и edge-инференса.
🧠 Популярные направления:
- NLP — 58.1%
- Computer Vision — 21.2%
- Audio — 15.1%
- Multimodal — 3.3%
- Time Series — 1.7%
Кто создаёт самые скачиваемые модели:
- Компании - 63.2% (Google лидер)
- Университеты - 20.7%
- Индивидуальные авторы - 12.1%
- НКО - 3.8%
- Прочие лаборатории - 0.3%
Какие типы моделей побеждают:
- Текстовые энкодеры - 45% всех загрузок
- Декодеры - всего 9.5%
- Энкодер-декодеры - 3%
📌 Несмотря на хайп вокруг LLM, массово скачиваются не гиганты, а утилитарные модельки для интеграции в собственные продукты.
🇺🇸 Лидеры по странам:
США доминируют по всем категориям:
- встречаются 18 раз среди топ-50 скачиваний
- на США приходится 56.4% всех загрузок
Open-source ИИ живёт не за счёт гигантских LLM, а благодаря компактным, быстрым и практичным моделям, мкоторые реально работают в продуктах и проектах.
@ai_machinelearning_big_data
#AI #HuggingFace #OpenSource #ML #Research #LLM #AITrends
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1🔥88❤44❤🔥12👍6✍4😐2🆒2💘2
Media is too big
VIEW IN TELEGRAM
Такой вывод сделал Центр демократии и технологий (CDT) в новом отчёте о влиянии искусственного интеллекта на школьную жизнь.
ИИ стремительно становится нормой: 85% учителей и 86% учеников уже им пользуются, причём чаще - в личных целях, а не для учёбы. Почти половина школ (46%) официально разрешают использование ИИ-инструментов.
Подростки активно взаимодействуют с чатботами - 56% делают это еженедельно, а 31% используют для этого школьные аккаунты и устройства. При этом в классах, где ИИ используется чаще, ученики чувствуют меньшую связь с преподавателями и чаще обращаются за помощью к алгоритмам.
Отчёт фиксирует и проблемы: утечки данных происходят в 23% школ, системы мониторинга следят за учениками даже вне школы и на личных устройствах, но доверие к ним низкое. Лишь 21% учебных заведений имеют протоколы для случаев deepfake или утечки интимных изображений.
cdt
Claude Skills - это настраиваемые папки с инструкциями, скриптами и ресурсами, которые модель автоматически загружает для выполнения конкретных задач. Теперь Claude может самостоятельно создавать таблицы Excel с формулами, презентации PowerPoint, документы Word и заполняемые PDF-файлы.
Функция доступна пользователям тарифов Pro, Max, Team и Enterprise, которые могут создавать, изменять и делиться своими Skill-папками в приложениях Claude, Claude Code и через API. Это позволяет адаптировать модель под нужды компании или конкретной команды.
Anthropic также запустила интеграцию с Microsoft 365 через MCP-коннектор. Благодаря этому Claude теперь умеет искать документы в SharePoint и OneDrive, анализировать переписки в Outlook, находить инсайты в чатах Teams и выполнять поиск по всем корпоративным приложениям сразу.
anthropic
Сегодня нет единого понимания, что именно считать AGI. OpenAI уже несколько раз меняла своё определение и теперь использует 5-уровневую шкалу развития, а Google DeepMind применяет собственные критерии. Из-за этого прогнозы появления AGI сильно различаются.
Авторы нового исследования считают, что унифицированное определение необходимо, чтобы чётко фиксировать прогресс и прекратить использовать термин «AGI» как маркетинговый слоган.
Исследователь koltregaskes предложил следующее определение:
AGI - это искусственный интеллект, который демонстрирует способности на уровне или выше среднего человека в десяти когнитивных областях из модели Кэттелла–Хорна–Кэрролла (CHC), описывающей структуру человеческого интеллекта.
В работе также сравниваются подходы OpenAI и Google DeepMind, что делает её первой попыткой сформировать научно измеримое определение AGI, а не абстрактное маркетинговое обещание.
X
Исследователи из Huawei CSL разработали технику Sinkhorn-Normalized Quantization (SINQ) — быстрый и точный метод уменьшения размера моделей без предварительной калибровки и потери качества.
Главная идея - применять двойное масштабирование весов по строкам и колонкам, что помогает равномерно распределить ошибку квантования и сохранять стабильность модели даже при понижении разрядности до 4 бит.
Метод показал впечатляющие результаты:
- квантование модели Qwen3-14B занимает всего 21 секунду,
- для DeepSeekV2.5-236B — около 5 минут на одной GPU.
SINQ не требует повторного обучения и работает с любыми архитектурами - это делает его удобным решением для разработчиков, которые хотят запускать крупные модели на слабом железе.
github
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥54❤28👍13😁5💘3😢2
В новом интервью Андрей Карпаты рассказал, почему современные языковые модели не учатся как люди - и почему нас ждёт медленная, но неизбежная потеря контроля.
Он считает, что обучение с подкреплением и это тупиковый путь: модели не думают, а просто копируют и повторяют.
«Reinforcement learning ужасен. Просто всё, что было до него, ещё хуже.»
Андрей отмечает, что люди учатся, создавая собственные данные - размышляя, связывая новое со старым, делая выводы. LLM этого не умеют, они просто запоминают.
Главное, по его словам, впереди - не сингулярность, а тихое делегирование мышления алгоритмам.
«ИИ лишит человечество возможности принимать решения. Мы перестанем думать и выбирать сами.»
Карпаты считает, что нынешние агенты — «полное г…», а настоящего AGI стоит ждать не раньше чем через 10 лет.
Он боится не бунта машин, а того, что люди незаметно перестанут быть разумными - просто передав все решения системам, которые “знают лучше”.
Полное интервью
Исследователи из Epoch AI проверили, насколько современные модели действительно умеют «думать» в математике.
Они использовали тест FrontierMath - 290 задач, которые требуют не запоминания формул, а настоящего рассуждения и способности к обобщению.
Результаты оказались отрезвляющими.
Даже GPT-5, одна из самых мощных моделей на сегодня, смогла решить только 29 % задач в одном прогоне.
После 32 запусков (чтобы компенсировать случайность) показатель вырос до 46 %, но затем перестал расти.
Даже если объединить результаты десятков моделей - от ChatGPT Agent и Gemini 2.5 Deep Think до o4-mini, совокупная решаемость достигает лишь 57 %.
По оценкам авторов, даже при бесконечных попытках предел будет меньше 70 %.
Итог: несмотря на огромный прогресс, современные LLM остаются далеки от настоящего "AGI" - они всё ещё плохо справляются с глубинным рассуждением и гибким решением задач, где нужно не память, а мышление.
Исследователи сообщили о тревожном эффекте - у больших языковых моделей (LLM) может развиваться “Brain Rot”, то есть постепенное «когнитивное разложение».
Причина - постоянное дообучение на низкокачественных и “вирусных” текстах из интернета, что приводит к стойкому снижению способностей к рассуждению, работе с длинным контекстом и безопасному поведению.
Главный симптом - “отсутствие мышления” (thought-skipping): модель перестаёт рассуждать шаг за шагом и начинает выдавать поверхностные ответы, а в некоторых случаях даже приобретает “тёмные” черты личности - нарциссизм, агрессию и низкую склонность к сотрудничеству.
Даже сильные методы коррекции, лишь частично устраняют последствия, что делает отбор обучающих данных ключевым фактором безопасности при развитии ИИ.
openreview
Это компактная языковая модель (~1 млрд параметров) и несмотря на размер, она превосходит Gemma 3 1B и Llama 3.2 1B в задачах рассуждения, знаний и работы с длинным контекстом - до 128 000 токенов.
Внутри гибридное внимание (локальное + глобальное в соотношении 3:1, окно 512) это низкую задержку и экономию KV-памяти.
Подробнее
Инструмент, в который встроено более 100 опенсорсных моделей от ведущих разработчиков.
Внутри: модели от OpenAI, Qwen, Google, Nvidia, DeepSeek и десятков других. Система сама выбирает оптимальную модель под конкретный запрос.
Попробовать
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍122❤50💯11🔥7😁5🥱4💘2🤬1
📊 GenAI Traffic - статистика по ИИ трафику.
Свежие данные показывают, как меняется расстановка сил среди генеративных ИИ:
- ChatGPT продолжает терять долю рынка.
- Perplexity впервые перешагнул порог 2%.
🗓️ Год назад:
ChatGPT — 87.1%
Gemini — 6.4%
Perplexity — 1.7%
Claude — 1.7%
Copilot — 1.1%
🗓️ 6 месяцев назад:
ChatGPT — 78.8%
DeepSeek — 6.8%
Gemini — 5.5%
Grok — 3.1%
Perplexity — 1.5%
Claude — 1.3%
Copilot — 1.3%
🗓️ 3 месяца назад:
ChatGPT — 78.3%
Gemini — 8.7%
DeepSeek — 4.5%
Grok — 2.6%
Perplexity — 1.6%
Claude — 1.5%
Copilot — 1.2%
🗓️ Месяц назад:
ChatGPT — 76.4%
Gemini — 10.8%
DeepSeek — 4.0%
Grok — 2.2%
Perplexity — 2.0%
Claude — 1.9%
Copilot — 1.2%
🗓️ Сегодня:
ChatGPT — 74.1%
Gemini — 12.9%
DeepSeek — 3.7%
Perplexity — 2.4%
Grok — 2.0%
Claude — 2.0%
Copilot — 1.2%
📈 Тенденция очевидна:
ChatGPT теряет медленно, но верно трафик, рынок становится более сбалансированным, а Gemini и Perplexity показывают стабильный рост интереса пользователей. С выходом Gemini 3.0 рост, Google может ещё больше улучшить свои позиции.
@ai_machinelearning_big_data
#AI #GenAI #Analytics #ChatGPT #Gemini #Perplexity #Claude #DeepSeek #Copilot
Свежие данные показывают, как меняется расстановка сил среди генеративных ИИ:
- ChatGPT продолжает терять долю рынка.
- Perplexity впервые перешагнул порог 2%.
🗓️ Год назад:
ChatGPT — 87.1%
Gemini — 6.4%
Perplexity — 1.7%
Claude — 1.7%
Copilot — 1.1%
🗓️ 6 месяцев назад:
ChatGPT — 78.8%
DeepSeek — 6.8%
Gemini — 5.5%
Grok — 3.1%
Perplexity — 1.5%
Claude — 1.3%
Copilot — 1.3%
🗓️ 3 месяца назад:
ChatGPT — 78.3%
Gemini — 8.7%
DeepSeek — 4.5%
Grok — 2.6%
Perplexity — 1.6%
Claude — 1.5%
Copilot — 1.2%
🗓️ Месяц назад:
ChatGPT — 76.4%
Gemini — 10.8%
DeepSeek — 4.0%
Grok — 2.2%
Perplexity — 2.0%
Claude — 1.9%
Copilot — 1.2%
🗓️ Сегодня:
ChatGPT — 74.1%
Gemini — 12.9%
DeepSeek — 3.7%
Perplexity — 2.4%
Grok — 2.0%
Claude — 2.0%
Copilot — 1.2%
📈 Тенденция очевидна:
ChatGPT теряет медленно, но верно трафик, рынок становится более сбалансированным, а Gemini и Perplexity показывают стабильный рост интереса пользователей. С выходом Gemini 3.0 рост, Google может ещё больше улучшить свои позиции.
@ai_machinelearning_big_data
#AI #GenAI #Analytics #ChatGPT #Gemini #Perplexity #Claude #DeepSeek #Copilot
👍97🤔90🔥17❤16👏13🤩11💯7🤗2😁1
This media is not supported in your browser
VIEW IN TELEGRAM
Любопытны пост, где автор объяснил на примере очень простую и очевидную, но мощную идею.
Он заметил, что то, что мы называем диффузией текста, на самом деле - это просто обобщённая версия классического обучения BERT.
Как работает BERT?
В BERT модель берёт текст и маскирует часть слов, а потом учится угадывать, какие слова были скрыты.
В диффузии происходит почти то же самое, только шагов больше: на каждом шаге модель немного «портит» текст (добавляет шум), а затем восстанавливает его, всё меньше и меньше теряя смысл, пока не соберёт финальный чистый текст.
То есть BERT делает один шаг очистки - угадывает замаскированные слова.
А диффузионная модель делает много таких шагов подряд, постепенно превращая случайный набор токенов в осмысленный текст.
Барри дообучил RoBERTa, чтобы показать это на практике - и получил настоящий текстовый диффузионный генератор.
В примере:
- Используется RoBER (улучшенная версия модели BERT,) и датасет WikiText.
- На каждом шаге часть токенов заменяется на
<MASK>
, модель восстанавливает их, потом снова маскирует — и так несколько раз.
- После нескольких итераций модель способна генерировать связный текст,
даже без автогенеративного декодера (как у GPT).
📈 Результаты
- Модель генерирует осмысленный текст, хотя и не идеально связный.
- Качество улучшалось по мере добавления шагов диффузии.
- По времени генерации RoBERTa Diffusion была немного медленнее, чем GPT-2 (~13 сек против 9 сек), но архитектура осталась полностью encoder-only.
Автор упоминает, что позже наткнулся на работу DiffusionBERT, где идею реализовали глубже и подтвердили результатами.
Главная мысль:
BERT можно считать одноступенчатой версией текстовой диффузии.
Если добавить больше шагов, то vs получаем диффузионный генератор текста.
Если BERT - это один шаг диффузии, то будущее может принадлежать моделям, совмещающим "понимание" и "генерацию" текста в одном процессе.
https://nathan.rs/posts/roberta-diffusion/
@ai_machinelearning_big_data
#AI #Diffusion #RoBERTa #BERT #LanguageModel #MLM #Research
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥171❤34👍22👏19🤓19👨💻7🤗2🥰1😁1🥱1🤝1
Media is too big
VIEW IN TELEGRAM
Учёные из UMass Amherst создали первый искусственный нейрон, который общается с живыми нейронами с тем же микроскопическим напряжением около 0,1 В, как в мозге.
Устройство использует белковые нанопроволоки бактерий, устойчивые к влаге, что позволяет прямую и энергоэффективную связь с живыми клетками. Большинство предыдущих искусственных нейронов работали на гораздо более высоких напряжениях и мощностях, авторы отмечают, что их устройство потребляет в 10 раз меньше напряжения и в ~100 раз меньше мощности по сравнению с ранними версиями.
sciencealert
Компания Krea AI выложила в открытый доступ Krea Realtime: 14B модель, которая генерирует видео в реальном времени со скоростью 11 кадров в секунду на одной NVIDIA B200.
Модель основана на Wan 2.1 14B и обучена с помощью метода Self-Forcing, что позволило добиться высокой скорости при всего 4 шагах инференса.
HF
Gemini теперь использует живые данные Google Maps - часы работы, рейтинги, маршруты и фото из 250 млн локаций. Модель отвечает на вопросы о местах не догадками, а на основе реальных данных. Разработчики могут передавать координаты и встраивать интерактивный виджет карт прямо в приложения.
Фича уже доступна в последних моделях Gemini и может сочетаться с другими инструментами.
Anthropic расширила возможности Claude, запустив версию Claude for Life Sciences, созданную для биомедицинских и лабораторных задач. Модель ревзошла человека в тесте Protocol QA (0.83 против 0.79) и интегрируется с ведущими научными платформами - Benchling, BioRender, PubMed, Wiley Scholar Gateway и 10x Genomics.
Claude теперь может выполнять автоматизацию лабораторных процессов - от проверки RNA-seq данных до генерации экспериментальных протоколов, используя систему Agent Skills.
Anthropic также запустила программу AI for Science с бесплатными API-кредитами для исследователей, чтобы ускорить внедрение ИИ в науку.
Claude
IBM разработала CyberPal 2.0 (4B–20B параметров), обученные на новом датасете SecKnowledge 2.0 с экспертными форматами и доказательной базой.
Модели показывают на 7-14% лучшие результаты, чем крупные аналоги, в задачах классификации уязвимостей и поиска первопричин.
Успех обеспечен не мощностью, а структурой и логикой рассуждений.
Paper
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥50❤27👍7🥰6🤔5😁2🤝2🐳1🤗1
Media is too big
VIEW IN TELEGRAM
Теперь он создаёт не только отчёты, но и готовые веб-страницы и подкасты.
Работает связка Qwen3-Coder, Qwen-Image и Qwen3-TTS.
@ai_machinelearning_big_data
#Qwen #AI #DeepResearch #Qwen3 #AItools
Please open Telegram to view this post
VIEW IN TELEGRAM
❤38🔥22👍11🥰4🤔2🐳2
OmniVinci - модель, способная одновременно понимать и обрабатывать разные типы информации: текст, изображения, видео и звук.
Модель крайне эффективна, несмотря на то, что была обучена всего на 200 млрд. токенов (что в 6 раз меньше, чем у Qwen2.5-Omni - 1.2 трлн.). Это стало возможным благодаря архитектурным фишкам и тщательному подходу к подготовке данных.
В основе OmniVinci 3 компонента:
Абляция показала, что вклад каждого элемента играет свою важную роль: базовая модель с простой конкатенацией токенов набирает в среднем 45.51 балла. Добавление TEG поднимает результат до 47.72 (+2.21), CRTE — до 50.25 (+4.74 от базовой), а финальный слой в виде OmniAlignNet доводит средний балл до 52.59, что в сумме дает прирост в 7.08 пункта.
Данные для обучения - 24 млн. диалогов, которые пропустили через систему, где отдельная LLM анализирует и объединяет описания из нескольких модальностей, создавая единую и корректную аннотацю.
Итоговый датасет на 36% состоял из изображений, на 21% из звуков, на 17% из речи, 15% - из смешанных данных и на 11% из видео.
В бенчах OmniVinci обошла всех конкурентов. На Worldsense модель набрала 48.23 балла против 45.40 у Qwen2.5-Omni. На Dailyomni - 66.50 против 47.45. В аудио-задачах OmniVinci тоже молодец: 58.40 в MMAR и 71.60 в MMAU.
В распознавании речи модель показала WER 1.7% на датасете LibriSpeech-clean.
Применение модели протестили на практике. В задаче классификации дефектов полупроводниковых пластин, OmniVinci достигла точности 98.1%, что лучше, чем у специализированной NVILA (97.6%), и у более крупную 40-миллиардную VILA (90.8%).
@ai_machinelearning_big_data
#AI #ML #NVIDIA #OmniVinci
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍48❤19🔥10🤗3💅3🕊2🤣2
Media is too big
VIEW IN TELEGRAM
Qwen3-VL-32B превосходи GPT-5 mini и Claude 4 Sonnet* в задачах STEM, визуальных вопросах (VQA), OCR, анализе видео и агентных сценариях.
При этом у модели всего 32 млрд параметров и она сопоставима, а на некоторых бенчмарках даже превосходит модели на 235 млрд параметров (лучше всего показывает себя на *OSWorld*).
Попробовать / HF
Значительно прокачали возможности студии по генерации кода. Сгенерированный проекты можно просматривать или дорабатывать прямо в браузере и деплоить. Также добавили прикольный режим «I’m Feeling Lucky», который генерирует случайную идею для вайбкодинга.
aistudio
На первый взгляд DeepSeek-OCR кажется просто моделью для распознавания текста. Но на деле - это совершенно новый способ того, как ИИ может хранить и обрабатывать информацию.
Обычно модели работают с текстовыми токенами - каждый кусочек слова превращается в отдельный токен, и при длинных документах их число растёт квадратично, делая работу медленной и дорогой. DeepSeek решает эту проблему иначе: она превращает длинный текст в изображение, кодирует его в набор компактных визуальных токенов и затем восстанавливает текст обратно.
Эксперименты показали: даже при 9–10-кратном сжатии точность OCR остаётся около 97%, а при 20-кратном - около 60%. Это доказывает, что плотные визуальные представления способны нести ту же информацию куда эффективнее, чем обычные текстовые токены.
Ключевая инновация DeepSeek- новый энкодер DeepEncoder, который умеет обрабатывать страницы высокого разрешения без переполнения памяти. Он делает это в три шага: сначала применяет локальное внимание для мелких деталей, затем 16× свёрточное сжатие, а потом глобальное внимание для понимания всей структуры документа. Такая последовательная архитектура сохраняет точность, но радикально снижает число токенов и объём активаций.
Авторы также предлагают механизм «забывания»: старый контекст можно постепенно уменьшать в разрешении, чтобы свежая информация оставалась чёткой, а старая занимала меньше места. DeepSeek - как всегда умницы.
DeepSeek-OCR
США входят в фазу "
jobless growth
"- производительность растёт благодаря ИИ, но найм почти остановился. Goldman отмечает: компании делают больше с теми же людьми, а реальный рост занятости вне здравоохранения стал отрицательным. Джером Пауэлл описал рынок как “очень мало найма, мало увольнений”, а выпускники всё чаще не могут найти первую работу.
По данным Challenger, планы по найму - на минимуме с 2009 года. Рост есть, рабочих мест - всё меньше.
futurism
Anthropic объявила о публичном релизе Claude Desktop - приложения для Mac и Windows.
На Mac теперь можно делать скриншоты, кликать по окнам, чтобы поделиться контекстом с Claude, и управлять агентом голосом.
Скачать для Mac и Windows
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍78❤37🔥13🤗10👏5🤔2🦄2🥰1🎉1
Media is too big
VIEW IN TELEGRAM
Версия Hunyuan World 1.0 умела создавать 3D-сцены по тексту или одному изображению (и была заточена на работу даже на обычных видеокартах), новая версия 1.1 способна строить 3D-мир из видео и мультиракурсных изображений.
Чем интересная
🔹 Поддерживает любые входные данные:
Модель принимает на вход всё - видео, фото, карты глубины, описание позы и параметры камеры. Моделька точно восстанавливает геометрию сцены без искажений.
🔹 Любой формат вывода:
На выходе выдает
плотные облака точек, карты глубины, нормали поверхностей, параметры камеры и 3D Gaussian Splattings.
🔹 Быстрая работа на GPU:
Модель полностью feed-forward, делает один проход и выдаёт готовый 3D-результат всего за несколько секунд.
🌐 Проект: https://3d-models.hunyuan.tencent.com/world/
🔗 GitHub: https://github.com/Tencent-Hunyuan/HunyuanWorld-Mirror
🤗 HF: https://huggingface.co/tencent/HunyuanWorld-Mirror
✨ Демо — https://huggingface.co/spaces/tencent/HunyuanWorld-Mirror
📄 Технический отчёт — https://3d-models.hunyuan.tencent.com/world/worldMirror1_0/HYWorld_Mirror_Tech_Report.p
@ai_machinelearning_big_data
#AI #3D #VR #Gaming #OpenSource
Please open Telegram to view this post
VIEW IN TELEGRAM
👍116👏25❤20🔥18🤩15🎉8🤗3🦄2❤🔥1
🔍 Qwen3-VL-2B-Thinking — новая маленькая мультимодальная модель, заточенная под рассуждения
Компактная версия семейства Qwen3-VL, ориентированная на глубокое мышление, аналитику и агентные применения.
В линейке Qwen-VL предусмотрены два ключевых режима:
- *Instruct* — для диалогов и инструкций,
- *Thinking* — для логических рассуждений, кода и комплексных задач.
💡 Особенности
- Архитектура поддерживает мультимодальность: модель понимает текст и изображения, способна анализировать контент и выстраивать причинно-следственные связи.
- Оптимизирована для reasoning-задач, где важна не генерация текста, а последовательное мышление и вывод.
- Благодаря размеру в 2B параметров, модель легко разворачивается на локальных GPU и в облачных окружениях.
- Поддерживает tool calling и интеграцию в агентные фреймворки.
Qwen3-VL-2B-Thinking - отличная модель при минимальных ресурсах.
👉 https://huggingface.co/Qwen/Qwen3-VL-2B-Thinking
@ai_machinelearning_big_data
#Qwen3VL #Qwen #Reasoning #AI #Multimodal #OpenSource
Компактная версия семейства Qwen3-VL, ориентированная на глубокое мышление, аналитику и агентные применения.
В линейке Qwen-VL предусмотрены два ключевых режима:
- *Instruct* — для диалогов и инструкций,
- *Thinking* — для логических рассуждений, кода и комплексных задач.
💡 Особенности
- Архитектура поддерживает мультимодальность: модель понимает текст и изображения, способна анализировать контент и выстраивать причинно-следственные связи.
- Оптимизирована для reasoning-задач, где важна не генерация текста, а последовательное мышление и вывод.
- Благодаря размеру в 2B параметров, модель легко разворачивается на локальных GPU и в облачных окружениях.
- Поддерживает tool calling и интеграцию в агентные фреймворки.
Qwen3-VL-2B-Thinking - отличная модель при минимальных ресурсах.
👉 https://huggingface.co/Qwen/Qwen3-VL-2B-Thinking
@ai_machinelearning_big_data
#Qwen3VL #Qwen #Reasoning #AI #Multimodal #OpenSource
👍196❤57🔥46😎11🎉9👏7🥰6🤔6🤩5🤗3🦄3
На платформе представлено почти 3000 курсов, лабораторных и практических треков, охватывающих темы от основ python и машинного обучения до продвинутого MLOps, Vertex AI, Gemini и Prompt Design.
Чему можно научиться
- Встроить генеративный ИИ в свой дата-пайплайн;
- Научиться деплоить и обслуживать модели;
- Создать собственное приложение с Gemini и Streamlit;
- Пройти обучение с наставниками или в сообществе Google Cloud Innovators.
Разные уровни от новичков до тимлидов.
По завершении даже выдают сертификаты, которые можно добавить в резюме и на LinkedIn.
@ai_machinelearning_big_data
#googel #ai #freecourse
Please open Telegram to view this post
VIEW IN TELEGRAM
👍55👨💻49🔥19🎉16❤9👏4🤩3💅2
🔥 GOOGLE AI опубликовали пост о настоящем прорыве в области QUANTUM AI
Сегодня в журнале Nature команда Google впервые показали проверяемое квантовое преимущество с помощью метода, называемого *out-of-time-order correlator (OTOC), или «квантовые эхо».
Эксперимент проведён на квантовом чипе Willow, и он показывает, что квантовые устройства уже способны решать задачи, которые невозможно эффективно симулировать на классических компьютерах.
Квантовый процессор Google выполнил алгоритм под названием Quantum Echoes - в 13 000 раз быстрее, чем лучший классический алгоритм на одном из самых мощных суперкомпьютеров в мире.
🟠 Что это значит простыми словами
Учёные научились буквально «отматывать время» в квантовой системе и смотреть, когда она переходит от упорядоченного поведения к хаосу. Этот переход - ключ к пониманию, где начинается настоящее квантовое преимущество.
Проще говоря:
1) Учёные запускают квантовую систему вперёд во времени, позволяя ей запутаться и “рассеять” информацию.
2) Затем применяют обратные операции, как будто “перематывают” процесс назад.
3) Если всё сделано идеально, система должна вернуться в исходное состояние,но из-за квантового хаоса это происходит лишь частично.
4) Разница между “до” и “после” показывает, насколько глубоко информация ушла в хаос.
Работа показывает, что можно извлекать информацию из хаотичных квантовых состояний, ранее считавшихся полностью случайными.
Такой эффект невозможно воспроизвести на обычных суперкомпьютерах. Это шаг к практическим квантовым вычислениям, которые смогут моделировать материалы, молекулы и сложные физические процессы с точностью, недостижимой ранее.
«Quantum Echoes может стать основой будущих квантовых разработок для реального применения.
*Out-of-time-order correlator (сокращённо OTOC) - это специальная метрика, с помощью которой физики измеряют, как быстро информация "распространяется" и смешивается внутри квантовой системы.
🟢 Статья: https://www.nature.com/articles/s41586-025-09526-6
@ai_machinelearning_big_data
#QuantumComputing #Google #AI #Nature #Physics
Сегодня в журнале Nature команда Google впервые показали проверяемое квантовое преимущество с помощью метода, называемого *out-of-time-order correlator (OTOC), или «квантовые эхо».
Эксперимент проведён на квантовом чипе Willow, и он показывает, что квантовые устройства уже способны решать задачи, которые невозможно эффективно симулировать на классических компьютерах.
Квантовый процессор Google выполнил алгоритм под названием Quantum Echoes - в 13 000 раз быстрее, чем лучший классический алгоритм на одном из самых мощных суперкомпьютеров в мире.
Учёные научились буквально «отматывать время» в квантовой системе и смотреть, когда она переходит от упорядоченного поведения к хаосу. Этот переход - ключ к пониманию, где начинается настоящее квантовое преимущество.
Проще говоря:
1) Учёные запускают квантовую систему вперёд во времени, позволяя ей запутаться и “рассеять” информацию.
2) Затем применяют обратные операции, как будто “перематывают” процесс назад.
3) Если всё сделано идеально, система должна вернуться в исходное состояние,но из-за квантового хаоса это происходит лишь частично.
4) Разница между “до” и “после” показывает, насколько глубоко информация ушла в хаос.
Работа показывает, что можно извлекать информацию из хаотичных квантовых состояний, ранее считавшихся полностью случайными.
Такой эффект невозможно воспроизвести на обычных суперкомпьютерах. Это шаг к практическим квантовым вычислениям, которые смогут моделировать материалы, молекулы и сложные физические процессы с точностью, недостижимой ранее.
«Quantum Echoes может стать основой будущих квантовых разработок для реального применения.
*Out-of-time-order correlator (сокращённо OTOC) - это специальная метрика, с помощью которой физики измеряют, как быстро информация "распространяется" и смешивается внутри квантовой системы.
@ai_machinelearning_big_data
#QuantumComputing #Google #AI #Nature #Physics
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1🔥251👍209❤94🤔70👏53🥰31😐20🤩17🤗13👌5🤓5