330K subscribers
4.17K photos
770 videos
17 files
4.69K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
🚀 Google DeepMind запускает хакатон "Gemma 3n Impact Challenge" на Kaggle — призовой фонд $150 000!

🏆 Главный приз — $10 000 за лучший проект, демонстрирующий возможности Gemma 3n на платформе Ollama

💡 Как участвовать:
1. Используйте Gemma 3n через Ollama
2. Создайте AI-проект — в любом направлении: образование, здравоохранение, экология, доступность и т.п.
3. Подайте работу на конкурсе на странице Kaggle:
➡️ https://www.kaggle.com/competitions/google-gemma-3n-hackathon/

Это уникальный шанс продемонстрировать подать свой проект, завязанный на edge девайсы и выиграть крупные призы.

https://www.kaggle.com/competitions/google-gemma-3n-hackathon/

@ai_machinelearning_big_data

#Gemma #DeepMind #Ollama
🔥6317👍15
🔥 Google DeepMind представили новую open-source библиотеку на Python для сборки асинхронных AI‑пайплайнов в реальном времени!

Новая библиотека позволяет собирать AI-процессы из компонентов — как LEGO для ИИ-агентов.

🔧 Особенности:
- Построение асинхронных, компонуемых пайплайнов
- Поддержка Gemini и Gemini Live API
- Основана на asyncio
- Обрабатывает мультимодальные данные: текст, изображения, аудио
- Внутри готовые агенты: real-time агент, исследователь, live-комментатор

💡 Подходит для:
- Разработки ИИ-агентов
- Генеративных моделей, работающих в реальном времени
- Быстрой сборки MVP с мультимодальными возможностями

Установка:


pip install genai-processors


Открытый код, готовые компоненты и интеграция с API.

Repo: https://github.com/google-gemini/genai-processors
Blog: https://developers.googleblog.com/en/genai-processors/

@ai_machinelearning_big_data


#DeepMind #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7524🔥19👏9
Media is too big
VIEW IN TELEGRAM
🎧 Perch 2.0 — AI, который слушает природу и спасает вымирающие виды.

DeepMind выпустили Perch 2.0 — компактную supervised-модель для биоакустики.

Без миллиардов параметров, без сложного self-supervised обучения — просто аккуратная модель, которая побила все бенчмарки и уже работает в полевых исследованиях.

🌱 Почему это важно
Звуки природы — это источник данных о биоразнообразии.
По аудиозаписям можно понять:
- какие животные живут в лесу,
- сколько их,
- размножаются ли они,
- не вытесняются ли они человеком.

Но расшифровка аудио — адский труд: в одном часе записи из тропиков десятки накладывающихся голосов.

🐦 Что умеет Perch 2.0
Perch 2.0 — универсальный эмбеддер для звуков животных.
Берёт 5 секунд аудио → выдаёт вектор, с которым можно:
- находить похожие записи,
- кластеризовать звуки,
- обучать простой классификатор для новых видов (few-shot).

Работает без GPU и без дообучения.

🛠 Архитектура
- Основa: EfficientNet-B3 (12M параметров).
- Три головы:
1. Классификация ~15k видов.
2. Прототипная — создаёт семантические логиты для distillation.
3. Source prediction — угадывает источник записи.
- Обучение в два шага:
1. Прототипная голова учится сама.
2. Её логиты становятся soft-label’ами для основной (**self-distillation**).

📊 Результаты
- SOTA на BirdSet и BEANS (ROC-AUC, mAP).
- Отличная переносимость на морских данных (киты, дельфины), которых почти не было в тренировке.
- Всё это — без fine-tuning, только фиксированные эмбеддинги.

Главный вывод
Perch 2.0 показывает, что:
🟢 качественная разметка,
🟢 простая архитектура,
🟢 чёткая постановка задачи
могут быть важнее, чем «бесконечные параметры» и сложные LLM.

🌍 Что это меняет
- Биологам — быстрый анализ джунглей Бразилии или рифов без написания своих моделей.
- ML-инженерам — наглядный пример, как обучать компактные сети без потери качества.
- Исследователям — напоминание: не всегда нужен GPT-4, чтобы сделать полезный инструмент.

🟠Github: https://github.com/google-research/perch-hoplite
🟠Подробнее: https://deepmind.google/discover/blog/how-ai-is-helping-advance-the-science-of-bioacoustics-to-save-endangered-species/
🟠Статья: http://arxiv.org/abs/2508.04665

@ai_machinelearning_big_data


#DeepMind #AI #Bioacoustics #MachineLearning #Perch #Ecology
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍8746🔥24❤‍🔥5
🚨 Очень интересная идея в новой работе Google DeepMind - как справиться с ростом ИИ-агентов, которые начинают действовать как самостоятельные игроки в экономике.

Если оставить процесс без контроля, такие агенты могут создать собственную экономику, напрямую связанную с человеческой. Это сулит и выгоды, и риски.

Авторы предлагают концепцию «песочницы» (sandbox economy) - контролируемого пространства, где агенты могут торговать и координироваться, не нанося вреда рынкам.

Вместо выполнения одной задачи, такие агенты могут:
торговать, вести переговоры и заключать сделки без участия человека,
переключаться между индустриями, формировать временные альянсы,
координировать ресурсы в реальном времени.

Первые стандарты вроде Agent2Agent и Model Context Protocol уже соединяют агентов между собой, закладывая основу глобальной экономики «машина-машина».

Персональные AI-ассистенты вскоре смогут конкурировать и сотрудничать на этих рынках: торговаться за вычислительные мощности, доступ к данным или бронирование поездок - всё в интересах пользователей. Расчёты будут обеспечиваться цифровыми валютами и системами кредитов.

🟢Экономисты предупреждают: такие рынки будут развиваться быстрее человеческой реакции. Цены, сделки и бизнес-модели могут меняться не за месяцы, а за минуты.

🟢Предложения авторов
- Использовать рынки и аукционы для честного распределения ресурсов.
Вводить миссионные цели — коллективные задачи, согласованные обществом.
Создавать систему удостоверений и репутации для агентов.
Применять смарт-контракты, аудит и прозрачные вычисления для доверия и контроля над ии.
Разрабатывать гибридное регулирование - сочетание технических протоколов и институциональных мер.

Если внедрение будет продумано, триллионы машинных часов можно будет направить на решение глобальных задач - от лечения болезней до строительства инфраструктуры.

⚡️ Статья: https://arxiv.org/pdf/2509.10147

@ai_machinelearning_big_data


#AI #AgentEconomy #DeepMind #AutonomousAgents
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥66👍4118🤔6🐳3👨‍💻2🗿2💘1
Media is too big
VIEW IN TELEGRAM
🤖 Demis Hassabis (Google DeepMind) о будущем робототехники

⦿ Гуманойдные формы могут оказаться ключевыми для повседневного и персонального использования — там, где среда создана под людей.
А вот специализированные роботы будут незаменимы на производстве и в лабораториях.

⦿ В ближайшие пару лет нас ждёт «вау-момент» в робототехнике.
Но фундаментальные модели пока требуют доработки: надёжности и более глубокого понимания реального мира.

⦿ DeepMind работает сразу в двух направлениях:
- как с Android для роботов — универсальный слой ОС, совместимый с любым роботом;
- и с вертикальной интеграцией - разработка конкретных роботов «под ключ».

Идея проста: скоро роботы будут не только на заводах, но и рядом с нами — а управлять ими станет так же привычно, как смартфоном.

🟢Полное интервью: https://www.youtube.com/watch?v=Kr3Sh2PKA8Y

@ai_machinelearning_big_data


#DeepMind #Google #DemisHassabis #Robotics
Please open Telegram to view this post
VIEW IN TELEGRAM
1🤔90👍3215👀9🎉8🤬3👏2🔥1
🧠 Google/DeepMind представили AlphaEvolve: ИИ, который помогает математикам и компьютерным теоретикам искать новые результаты.

💡 Как он работает
Обычно LLM стараются писать доказательства целиком, но это слишком сложно и ненадёжно.

AlphaEvolve идёт другим путём: он не пишет доказательства сам, а генерирует новые маленькие элементы *конструкции (gadgets)*.

Эти кусочки можно быстро проверить автоматикой, и если они работают, их можно собрать в более крупные теоремы.

📈 Что удалось найти
- Новый результат для задачи MAX-4-CUT (Это задача из теории алгоритмов и комбинаторной оптимизации, разновидность классической задачи MAX-CUT), с конструкцией, которую раньше никто не придумывал.
- Сильные новые нижние границы для задач на случайных графах, включая работу с Ramanujan graphs.
- Проверка теорем стала в 10 000 раз быстрее, чем в обычных методах.

🧩 Зачем это нужно
- Математика требует 100% точности - и тут AI помогает именно как генератор идей, а проверка остаётся строгой и надёжной.
- Такой подход экономит годы человеческой работы и открывает дорогу к новым теоремам и алгоритмам.

📄 Подробнее: research.google/blog/ai-as-a-research-partner-advancing-theoretical-computer-science-with-alphaevolve/

@ai_machinelearning_big_data


#AI #Math #DeepMind #Research
👍317👏154🔥50🤓23😁21🎉16🤩16😢13👌13🤔11🥰4